Seven Malaysian medicinal plants were screened for their antiplasmodial activities in vitro. These plants were selected based on their traditional claims for treatment or to relieve fever. The plant extracts were obtained from Forest Research Institute Malaysia (FRIM). The antiplasmodial activities were carried out using the pLDH assay to Plasmodium falciparum D10 strain (sensitive strain) while the cytotoxic activities were carried out towards Madin- Darby bovine kidney (MDBK) cells using MTT assay. The concentration of extracts used for both screening assays were from the highest concentration 64 microg/ml, two fold dilution to the lowest concentration 0.03 microg/ml. Goniothalamus macrophyllus (stem extract) showed more than 60% growth inhibition while Goniothalamus scortechinii root and stem extract showed a 90% and more than 80% growth inhibition at the last concentration tested, 0.03 microg/ml. The G. scortechini (leaves extract) showed an IC50 (50% growth inhibition) at 8.53 microg/ml, Ardisia crispa (leaves extract) demonstrated an IC50 at 5.90 +/- 0.14 microg/ml while Croton argyratus (leaves extract) showed a percentage inhibition of more than 60% at the tested concentration. Blumea balsamifera root and stem showed an IC50 at 26.25 +/- 2.47 microg/ml and 7.75 +/- 0.35 microg/ ml respectively. Agathis borneensis (leaves extract) demonstrated a 50% growth inhibition at 11.00 +/- 1.41 microg/ml. The study gives preliminary scientific evidence of these plant extracts in line with their traditional claims.

Download full-text PDF

Source

Publication Analysis

Top Keywords

growth inhibition
16
leaves extract
16
malaysian medicinal
8
medicinal plants
8
antiplasmodial activities
8
traditional claims
8
plant extracts
8
activities carried
8
003 microg/ml
8
stem extract
8

Similar Publications

Combining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function.

View Article and Find Full Text PDF

C118P Suppresses Gastric Cancer Growth via Promoting Autophagy-Lysosomal Degradation of RAB1A.

Pharmaceutics

December 2024

New Drug Screening and Pharmacodynamics Evaluation Center, National Key Laboratory for Multi-Target Natural Drugs, China Pharmaceutical University, Nanjing 210009, China.

: Gastric cancer (GC) is the leading cause of cancer-related deaths worldwide. C118P, a microtubule inhibitor with anti-angiogenic and vascular-disrupting activities, was proven to be cytotoxic to various cancer cell lines. This study aimed to explore the anti-tumor effect of C118P against gastric cancer and identify its potential target.

View Article and Find Full Text PDF

Here, we report on the synthesis and biological evaluation of a novel peptide-drug conjugate, P6-SN38, which consists of the EGFR-specific short cyclic peptide, P6, and the Topo I inhibitor SN38, which is a bioactive metabolite of the anticancer drug irinotecan. SN38 is attached to the peptide at position 20 of the E ring's tertiary hydroxyl group via a mono-succinate linker. The developed peptide-drug conjugate (PDC) exhibited sub-micromolar anticancer activity on EGFR-positive (EGFR+) cell lines but no effect on EGFR-negative (EGFR-) cells.

View Article and Find Full Text PDF

Background/objectives: Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!