Purpose: To examine the relationship between uncorrected residual wavefront error and visual performance (VP) in rigid gas permeable (RGP) contact lens-wearing keratoconic eyes.

Methods: Seven eyes from six subjects (six moderate, one severe) were studied (mean +/- SD age: 42.71 +/- 11.38 years). Significant corneal scarring was an exclusion criterion. Measurements were taken with RGP lenses in place. After pupil dilation, the VP measures of high contrast logMAR visual acuity (VA) and Pelli-Robson contrast sensitivity (PRCS) were measured through a 5-mm artificial pupil. Wavefront error was measured using a Shack-Hartmann wavefront sensor and calculated over 5 mm. For both VP and wavefront error, comparisons were made to previously collected normal values by calculating the interval encompassing 95% of normals, then reporting how many of the seven keratoconic eyes fell outside the normal interval. Additionally, second to sixth order aberrations were processed into four previously reported image quality metrics: root mean square of the wavefront (RMSw), root mean square of the slope (RMSs), average blur strength (Bave) and diameter containing 50% light energy (D50) and regressed against VP measures.

Results: Five of seven keratoconic eyes fell outside the normal interval (-0.23 to 0.09) for VA and two of seven fell outside the normal interval (1.59 to 2.03) for PRCS. Five of seven keratoconic eyes fell outside the normal interval (0.07 to 0.35 microm) for total higher order RMS. Linear regressions demonstrated relationships between both VA and PRCS and the image quality metrics RMSw, D50, RMSs, and Bave with R values for VA = 0.30, 0.30, 0.47, 0.62, and PRCS = 0.21, 0.15, 0.45, 0.75 respectively.

Conclusions: VP in RGP-wearing keratoconic eyes is reduced and higher order wavefront aberrations are elevated compared to normals. Metrics of retinal image quality demonstrate a relationship between keratoconic VP and residual wavefront aberrations. This relationship suggests developing corrections that more completely correct aberrations may improve visual performance in keratoconus.

Download full-text PDF

Source
http://dx.doi.org/10.1097/OPX.0b013e31802e64f0DOI Listing

Publication Analysis

Top Keywords

wavefront error
16
keratoconic eyes
16
fell normal
16
normal interval
16
visual performance
12
eyes fell
12
image quality
12
error visual
8
residual wavefront
8
quality metrics
8

Similar Publications

As the demand for computational performance in artificial intelligence (AI) continues to increase, diffractive deep neural networks (DNNs), which can perform AI computing at the speed of light by repeated optical modulation with diffractive optical elements (DOEs), are attracting attention. DOEs are varied in terms of fabrication methods and materials, and among them, volume holographic optical elements (vHOEs) have unique features such as high selectivity and multiplex recordability for wavelength and angle. However, when those are used for DNNs, they suffer from unknown wavefront aberrations compounded by multiple fabrication errors.

View Article and Find Full Text PDF

Thermal deformation compensation scheme to the sub-nanometre level of a piezoelectric offset mirror for MHz repetition rate free-electron laser.

J Synchrotron Radiat

January 2025

Dalian Coherent Light Source and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.

Free-electron laser (FEL) facilities operating at MHz repetition rates can emit lasers with average powers reaching hundreds of watts. Partial absorption of this power induces thermal deformation of a few micrometres on the mirror surface. Such deformation degrades the characteristics of the reflected photon beam, leading to focal spot aberrations and wavefront distortions that fail to meet experimental requirements.

View Article and Find Full Text PDF

We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface.

View Article and Find Full Text PDF

To overcome the limitations of phase sampling points in testing aspherical surface wavefronts using traditional interferometers, we propose a high-spatial-resolution method based on multi-directional orthogonal lateral shearing interferometry. In this study, we provide a detailed description of the methodology, which includes the theoretical foundations and experimental setup, along with the results from simulations and experiments. By establishing a relational model between the multi-directional differential wavefront and differential Zernike polynomials, we demonstrate high-spatial-resolution wavefront reconstruction using multi-directional orthogonal lateral shearing interferometry.

View Article and Find Full Text PDF

Collimated flat-top beam shaper metasurface doublet based on the complex-amplitude constraint Gerchberg-Saxton algorithm.

Nanophotonics

April 2024

Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.

Collimated flat-top beam shapers primarily consisting of freeform lenses have a wide range of applications and pose challenges in terms of processing and integration when the diameter is less than millimeters. Metasurfaces represent a promising solution to planarize optics, can mimic any surface curvature without additional fabrication difficulty, and are suitable for flat-top optics. The conventional metasurface design approach relies on imparting the required phase using meta-atoms and encounters challenges in amplitude modulation due to near-field coupling and varying transmittances among meta-atoms with different phases, making the design of flat-top beam shapers difficult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!