Peritoneal dialysis (PD) is a form of renal replacement and is based on the use of the peritoneum as a semipermeable membrane across which ultrafiltration and diffusion take place. Nevertheless, continuous exposure to bioincompatible PD solutions and episodes of peritonitis or hemoperitoneum cause acute and chronic inflammation and injury to the peritoneal membrane, which progressively undergoes fibrosis and angiogenesis and, ultimately, ultrafiltration failure. The pathophysiologic mechanisms that are involved in peritoneal functional impairment have remained elusive. Resident fibroblasts and infiltrating inflammatory cells have been considered the main entities that are responsible for structural and functional alterations of the peritoneum. Recent findings, however, demonstrated that new fibroblastic cells may arise from local conversion of mesothelial cells (MC) by epithelial-to-mesenchymal transition (EMT) during the inflammatory and repair responses that are induced by PD and pointed to MC as protagonists of peritoneal membrane deterioration. Submesothelial myofibroblasts, which participate in inflammatory responses, extracellular matrix accumulation, and angiogenesis, can originate from activated resident fibroblasts and from MC through EMT. This heterogeneous origin of myofibroblasts reveals new pathogenic mechanisms and offers novel therapeutic possibilities. This article provides a comprehensive review of recent advances on understanding the mechanisms that are implicated in peritoneal structural alterations, which have allowed the identification of the EMT of MC as a potential therapeutic target of membrane failure.

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2006111292DOI Listing

Publication Analysis

Top Keywords

peritoneal membrane
12
membrane failure
8
peritoneal dialysis
8
potential therapeutic
8
resident fibroblasts
8
peritoneal
7
membrane
5
epithelial mesenchymal
4
mesenchymal transition
4
transition peritoneal
4

Similar Publications

Leptospirosis is a zoonosis caused by spirochete Leptospira. Pathogenic leptospires evade the Complement System, enabling their survival upon contact with normal human serum in vitro. In a previous study, we demonstrated that proteases secreted by pathogenic leptospires cleave several Complement proteins, including C3 and the opsonins C3b and iC3b.

View Article and Find Full Text PDF

Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality.

View Article and Find Full Text PDF

Novel methyldithiocarbazate derivatives as NDM-1 inhibitors to combat multidrug-resistant bacterial infection with β-lactams.

Bioorg Chem

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:

Given the ever-evolving landscape of antimicrobial resistance, the emergence of New Delhi metallo-β-lactamase-1 (NDM-1) has introduced a formidable challenge to global public health. In previous research, we identified the Compound Zndm19 as an NDM-1 inhibitor and reported Zndm19 derivatives, which exhibited moderate antibacterial activity when combined with meropenem (MEM). This moderate activity may have been due to the inability of Zndm19 to efficiently penetrate the bacterial outer membrane or its susceptibility to hydrolysis, which prevented it from exerting strong enzyme inhibition in synergy with bacterial cells.

View Article and Find Full Text PDF

Diaphragm Ultrasonography in Patients Without Symptoms or Signs of Respiratory Impairment.

Muscle Nerve

December 2024

The Higher Education Institution Fizioterapevtika, Ljubljana, Slovenia.

Introduction/aims: We aimed to determine differences in diaphragm thickness by including/excluding pleural and peritoneal membranes, the variability in diaphragm thickness over the apposition zone, and the predictors of diaphragm thickness and excursion measurements.

Methods: At least 10 male and female subjects were recruited for each decade of life. Spirometry, respiratory muscle strength, and the diaphragm ultrasound (US) measurements were performed.

View Article and Find Full Text PDF

Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!