The inner centromeric protein (INCENP) and other chromosomal passenger proteins are known to localize on the cleavage furrow and to play a role in cytokinesis. However, it is not known how INCENP localizes on the furrow or whether this localization is separable from that at the midbody. Here, we show that the association of Dictyostelium INCENP (DdINCENP) with the cortex of the cleavage furrow involves interactions with the actin cytoskeleton and depends on the presence of the kinesin-6-related protein Kif12. We found that Kif12 is found on the central spindle and the cleavage furrow during cytokinesis. Kif12 is not required for the redistribution of DdINCENP from centromeres to the central spindle. However, in the absence of Kif12, DdINCENP fails to localize on the cleavage furrow. Domain analysis indicates that the N terminus of DdINCENP is necessary and sufficient for furrow localization and that it binds directly to the actin cytoskeleton. Our data suggest that INCENP moves from the central spindle to the furrow of a dividing cell by a Kif12-dependent pathway. Once INCENP reaches the equatorial cortex, it associates with the actin cytoskeleton where it then concentrates toward the end of cytokinesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951774PMC
http://dx.doi.org/10.1091/mbc.e06-10-0895DOI Listing

Publication Analysis

Top Keywords

cleavage furrow
20
actin cytoskeleton
16
central spindle
12
inner centromeric
8
centromeric protein
8
protein incenp
8
furrow
8
involves interactions
8
localize cleavage
8
furrow localization
8

Similar Publications

Membrane oscillations driven by Arp2/3 constrict the intercellular bridge during neural stem cell divisions.

bioRxiv

October 2024

Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403.

After the first furrowing step of animal cell division, the nascent sibling cells remain connected by a thin intercellular bridge (ICB). In isolated cells nascent siblings migrate away from each other to generate tension and constrict the ICB, but less is known about how cells complete cytokinesis when constrained within tissues. We examined the ICBs formed by larval brain neural stem cell (NSC) asymmetric divisions and find that they rely on constriction focused at the central midbody region rather than the flanking arms of isolated cell ICBs.

View Article and Find Full Text PDF

Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model.

Nat Commun

November 2024

Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.

The spatial and temporal dynamics of forces in cells coordinate essential behaviors like division, polarization, and migration. While intracellular signaling initiates contractile ring assembly during cell division, how mechanical forces coordinate division and their energetic costs remain unclear. Here, we develop an in vitro model where myosin-induced stress drives division-like shape changes in giant unilamellar vesicles (GUVs, liposomes).

View Article and Find Full Text PDF

Promastigote Leishmania mexicana have a complex cell division cycle characterised by the ordered replication of several single-copy organelles, a prolonged S phase and rapid G2 and cytokinesis phases, accompanied by cell cycle stage-associated morphological changes. Here we exploit these morphological changes to develop a high-throughput and semi-automated imaging flow cytometry (IFC) pipeline to analyse the cell cycle in live L. mexicana.

View Article and Find Full Text PDF

At anaphase, spindle microtubules (MTs) position the cleavage furrow and trigger actomyosin assembly by localizing the small GTPase RhoA and the scaffolding protein anillin to a narrow band along the equatorial cortex [1-6]. Using vertebrate somatic cells we examined the temporal control of furrow assembly. Although its positioning commences at anaphase onset, furrow maturation is not complete until ∼10-11 min later.

View Article and Find Full Text PDF

Septins: Structural Insights, Functional Dynamics, and Implications in Health and Disease.

J Cell Biochem

September 2024

Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.

Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!