Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses.

J Neurosci

Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Published: June 2007

Sensory systems use adaptive coding mechanisms to filter redundant information from the environment to efficiently represent the external world. One such mechanism found in most sensory neurons is rate adaptation, defined as a reduction in firing rate in response to a constant stimulus. In auditory nerve, this form of adaptation is likely mediated by exhaustion of release-ready synaptic vesicles in the cochlear hair cell. To better understand how specific synaptic mechanisms limit neural coding strategies, we examined the trial-to-trial variability of auditory nerve responses during short-term rate-adaptation by measuring spike-timing precision and spike-count reliability. After adaptation, precision remained unchanged, whereas for all but the lowest-frequency fibers, reliability decreased. Modeling statistical properties of the hair cell-afferent fiber synapse suggested that the ability of one or a few vesicles to elicit an action potential reduces the inherent response variability expected from quantal neurotransmitter release, and thereby confers the observed count reliability at sound onset. However, with adaptation, depletion of the readily releasable pool of vesicles diminishes quantal content and antagonizes the postsynaptic enhancement of reliability. These findings imply that during the course of short-term adaptation, coding strategies that employ a rate code are constrained by increased neural noise because of vesicle depletion, whereas those that employ a temporal code are not.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672437PMC
http://dx.doi.org/10.1523/JNEUROSCI.5239-06.2007DOI Listing

Publication Analysis

Top Keywords

auditory nerve
12
spike-count reliability
8
spike-timing precision
8
nerve responses
8
coding strategies
8
adaptation
6
reliability
5
adaptation reduces
4
reduces spike-count
4
reliability spike-timing
4

Similar Publications

: Before a cochlear implant is considered, patients undergo various audiological tests to assess their suitability. One key test measures the auditory brainstem response (ABR) to acoustic stimuli. However, in some cases, even with maximum sound stimulation, no response is detected.

View Article and Find Full Text PDF

Perception and production of music and speech rely on auditory-motor coupling, a mechanism which has been linked to temporally precise oscillatory coupling between auditory and motor regions of the human brain, particularly in the beta frequency band. Recently, brain imaging studies using magnetoencephalography (MEG) have also shown that accurate auditory temporal predictions specifically depend on phase coherence between auditory and motor cortical regions. However, it is not yet clear whether this tight oscillatory phase coupling is an intrinsic feature of the auditory-motor loop, or whether it is only elicited by task demands.

View Article and Find Full Text PDF

Purpose: Cochlear implantation (CI) surgery is essential for restoring hearing in individuals with severe sensorineural hearing loss. Accurate placement of the electrode within the cochlea is essential for successful auditory outcomes and minimizing complications. This study aims to analyze the relationship between the round window niche (RWN) alignment, its visibility during surgery, and the impact on surgical techniques and outcomes.

View Article and Find Full Text PDF

Background: We evaluated the accuracy of magnetic resonance imaging (MRI) computed tomography (CT)-like sequences compared to normal-resolution CT (NR-CT) and super-high-resolution CT (SHR-CT) for planning of cochlear implantation.

Methods: Six cadaveric temporal bone specimens were used. 3-T MRI scans were performed using radial volumetric interpolated breath-hold (STARVIBE), pointwise-encoding time reduction with radial acquisition (PETRA), and ultrashort time of echo (UTE) sequences.

View Article and Find Full Text PDF

The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!