Rats rhythmically sweep their whiskers over object features, generating sequential deflections of whisker arcs. Such moving wavefronts of whisker deflection are likely to be fundamental elements of natural somatosensory input. To determine how moving wavefronts are represented in somatosensory cortex (S1), we measured single- and multiunit neural responses in S1 of anesthetized rats to moving wavefronts applied through a piezoelectric whisker deflector array. Wavefronts consisted of sequential deflections of individual whisker arcs, which moved progressively across the whisker array. Starting position (starting arc), direction, and velocity of wavefronts were varied. Neurons responded strongly only when wavefront starting position included their principal whisker (PW). When wavefronts started at neighboring positions and swept through the PW, responses to the PW arc were suppressed by
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00056.2007 | DOI Listing |
Accurate and repeatable measurement of the radius of curvature (RoC) of spherical sample surfaces is of great importance in optics. This importance lies in the ubiquitous use of spherical optical elements such as curved mirrors and lenses. Due to a high measurement sensitivity, interferometric techniques are often deployed for accurate characterization of the sample surface RoC.
View Article and Find Full Text PDFNat Commun
November 2023
Department of Applied Physics, Yale University, New Haven, CT, 06520, USA.
Sci Rep
September 2023
College of Industrial Technology, Nihon University, Narashino, Chiba, 275-8575, Japan.
Tunable diode laser absorption spectroscopy (TDLAS) is a valuable method for measuring particle flow velocities in plasma. However, conventional TDLAS using a plane-wave beam is sensitive only to the laser propagation direction. This limitation is particularly unfavorable for the observation of the particle transportation perpendicularly incident on the material in the plasma-material interaction.
View Article and Find Full Text PDFThe radius of curvature () is a fundamental parameter of spherical optical surfaces. The measurement range of the widely adopted traditional interferometric method is limited by the length of the precision linear guide rail carrying the measured surface from the cat's eye to the confocal position, and the test result is vulnerable to airflow and vibration in the test environment. An interferometric method is proposed for the radius measurement of spherical surfaces based on a small axial moving distance and the corresponding defocus wavefront to eliminate the dependence on a long guide rail and extend the measuring range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!