Single photon emission computed tomography (SPECT) in cerebellar disease: cerebello-cerebral diaschisis.

Eur Neurol

Neurology Service, Hôtel-Dieu de Montréal, Canada.

Published: February 1992

Single photon emission computed tomography assessments were conducted in normal controls (n = 25), patients with unilateral cerebellar infarctions (n = 4), patients with olivopontocerebellar atrophy (OPCA; n = 15) and patients with Friedreich's ataxia (FA; n = 6). In subjects with unilateral cerebellar infarctions, crossed cerebellar-cortical diaschisis was observed: reduced cerebellar hexamethylpropyleneamine oxime (HMPAO) uptake was invariably accompanied by a diminution of HMPAO in the contralateral basal ganglia and frontoparietal cortex. OPCA and FA patients had various degrees of decreased HMPAO uptake in both the cerebellum and cerebral hemispheres.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000116705DOI Listing

Publication Analysis

Top Keywords

single photon
8
photon emission
8
emission computed
8
computed tomography
8
unilateral cerebellar
8
cerebellar infarctions
8
opca patients
8
hmpao uptake
8
tomography spect
4
cerebellar
4

Similar Publications

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Metasurface higher-order poincaré sphere polarization detection clock.

Light Sci Appl

January 2025

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.

Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.

View Article and Find Full Text PDF

The Role of Imaging in Pulmonary Vascular Disease: The Clinician's Perspective.

Radiol Clin North Am

March 2025

Department of Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA; Department of Pediatrics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA. Electronic address:

Pulmonary vascular diseases, particularly when accompanied by pulmonary hypertension, are complex disorders often requiring multimodal imaging for diagnosis and monitoring. Echocardiography is the primary screening tool for pulmonary hypertension, while cardiac MR imaging (CMR) is used for more detailed characterization and risk stratification in right ventricular failure. Chest computed tomography (CT) is used to detect vascular anomalies and parenchymal lung diseases.

View Article and Find Full Text PDF

Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.

View Article and Find Full Text PDF

Carbon Nanosphere-Based TiO Double Inverse Opals.

Molecules

January 2025

Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary.

Inverse opals (IOs) are intensively researched in the field of photocatalysis, since their optical properties can be fine-tuned by the initial nanosphere size and material. Another possible route for photonic crystal programming is to stack IOs with different pore sizes. Accordingly, single and double IOs were synthesized using vertical deposition and atomic layer deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!