A model for glioma cell migration on collagen and astrocytes.

J R Soc Interface

IMNC, Universités Paris VII-Paris XI, CNRS, UMR 8165, Bâtiment 104, 91406 Orsay, France.

Published: January 2008

We present a model for the migration of glioma cells on substrates of collagen and astrocytes. The model is based on a cellular automaton where the various dynamical effects are introduced through adequate evolution rules. Using our model, we investigate the role of homotype and heterotype gap junction communication and show that it is possible to reproduce the corresponding experimental migration patterns. In particular, we confirm the experimental findings that inhibition of homotype gap junctions favours migration while heterotype inhibition hinders it. Moreover, the effect of heterotype gap junction inhibition dominates that of homotype inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605504PMC
http://dx.doi.org/10.1098/rsif.2007.1070DOI Listing

Publication Analysis

Top Keywords

collagen astrocytes
8
astrocytes model
8
heterotype gap
8
gap junction
8
model
4
model glioma
4
glioma cell
4
migration
4
cell migration
4
migration collagen
4

Similar Publications

It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring.

View Article and Find Full Text PDF

Immune cell infiltration and modulation of the blood-brain barrier in a guinea pig model of tuberculosis: Observations without evidence of bacterial dissemination to the brain.

PLoS One

December 2024

Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America.

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is a chronic inflammatory disease. Although typically associated with inflammation of the lungs and other peripheral tissues, increasing evidence has uncovered neurological consequences attributable to Mtb infection. These include deficits in memory and cognition, increased risk for neurodegenerative disease, and progressive neuropathology.

View Article and Find Full Text PDF

Cirrhosis incidence is significantly increased with age and frequently complicated with neurocognitive dysfunction. We have evaluated the contribution of aging to neuroinflammation in the liver-brain axis in advanced chronic liver disease. Young (6-week-old) and old (9-month-old) mice were included in a 12-week protocol of CCl-induced cirrhosis.

View Article and Find Full Text PDF

Background: The blood-brain barrier (BBB) strictly regulates the penetration of substances into the brain, which, although important for maintaining brain homeostasis, may delay drug development because of the difficulties in predicting pharmacokinetics/pharmacodynamics (PKPD), toxicokinetics/toxicodynamics (TKTD), toxicity, safety, and efficacy in the central nervous system (CNS). Moreover, BBB functional proteins show species differences; therefore, humanized in vitro BBB models are urgently needed to improve the predictability of preclinical studies. Recently, international trends in the 3Rs in animal experiments and the approval of the FDA Modernization Act 2.

View Article and Find Full Text PDF

Glioblastoma recurrence is a major hindrance to treatment success and is driven by the invasion of glioma stem cells (GSCs) into healthy tissue that are inaccessible to surgical resection and are resistant to existing chemotherapies. Tissue-level fluid movement, or interstitial fluid flow (IFF), regulates GSC invasion in a manner dependent on the tumor microenvironment (TME), highlighting the need for model systems that incorporate both IFF and the TME. We present an accessible method for replicating the invasive TME in glioblastoma: a hyaluronan-collagen I hydrogel composed of human GSCs, astrocytes, and microglia seeded in a tissue culture insert.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!