Alternating current mode scanning electrochemical microscopy (AC-SECM) enables local detection of electrochemical surface activity without any redox mediator present in solution. Z-approach curves toward the substrate result in a negative feedback curve of the ac signal for insulating samples. On conducting samples, however, the shape of the feedback curve was found to be dependent on the ac perturbation frequency. Approach curves over a wide range of frequencies were performed, and the results were applied to interpret laterally resolved frequency-dependent measurements obtained with combined atomic force microscopy-AC-SECM (AFM-AC-SECM). For the first time, this frequency dependence of the signal was utilized to fine-tune the electrochemical contrast in lateral imaging in AC-SECM. An array of gold microelectrodes embedded in silicon nitride displaying significant changes in electrochemical activity as well as in topography was investigated using a bifunctional AFM-SECM tip with an integrated recessed ring microelectrode. Due to the unique geometrical conditions the electrochemical contrast between the conducting gold spots and the insulating SixNy is reversed, crosses zero, and inverts as a function of the applied ac frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac070605eDOI Listing

Publication Analysis

Top Keywords

electrochemical microscopy
12
frequency dependence
8
electrochemical
8
electrochemical activity
8
atomic force
8
feedback curve
8
electrochemical contrast
8
frequency
4
dependence electrochemical
4
activity contrast
4

Similar Publications

Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).

View Article and Find Full Text PDF

Manipulation of Surface Spin Configurations for Enhanced Performance in Oxygen Evolution Reactions.

Nano Lett

January 2025

Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.

studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.

View Article and Find Full Text PDF

Li-ion and Na-ion batteries are promising systems for powering electric vehicles and grid storage. Layered 3d transition metal oxides ATMO (A = Li, Na; TM = 3d transition metals; 0 < x ≤ 2) have drawn extensive attention as cathode materials due to their exceptional energy densities. However, they suffer from several technical challenges caused by crystal structure degradation associated with TM ions migration, such as poor cycling stability, inferior rate capability, significant voltage hysteresis, and serious voltage decay.

View Article and Find Full Text PDF

Boosting Amino Acid Synthesis with WO Sub-Nanoclusters.

Adv Mater

January 2025

College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.

The conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.

View Article and Find Full Text PDF

A Highly Sensitive Creatine Kinase Detection in Human Serum using 11-mercaptoundecanoic acid Modified ITO-PET Electrodes.

Anal Biochem

January 2025

Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale-TURKEY. Electronic address:

The enzyme creatine kinase (CK) is a biomarker that plays an extremely significant role in the early detection of cardiovascular disorders. Serum levels of CK are regularly monitored in patients with heart attacks, one of the most critical cardiovascular illnesses. In this study, a highly sensitive electrochemical immunosensor system was designed for the importance of early diagnosis of CK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!