Selective extraction of free astaxanthin from Haematococcus culture using a tandem organic solvent system.

Biotechnol Prog

School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea.

Published: October 2007

A novel tandem solvent process of dodecane and methanol was developed for the selective extraction of free astaxanthin from red encysted Haematococcus culture. The process consists of dodecane extraction for astaxanthin mixture from the culture (stage 1) and methanol extraction for free astaxanthin from the dodecane extract (stage 2). In the first stage, astaxanthin mixture was directly extracted to dodecane from the culture broth without cell harvest process, followed by a rapid separation of the dodecane extract and the culture medium containing cell debris by simple settling. In the second stage, free astaxanthin was selectively collected to methanol from the dodecane extract, accompanied with saponification of astaxanthin-esters by the addition of NaOH to methanol. During saponification, use of the optimum NaOH concentration (0.02 M) and low temperature (4 degrees C) reaction minimized the degradation of free astaxanthin, resulting in a total recovery yield of free astaxanthin of over 85%. The free-astaxanthin-containing methanol extract was also simply separated from dodecane by gravity settling, after which the astaxanthin-free dodecane was effectively recycled to the first stage, yielding a stable extractability of astaxanthin mixture during repeated extraction. Our results indicate the potential of the proposed tandem solvent process as an alternative extraction technology for the high-value antioxidant Haematococcus astaxanthin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp0700354DOI Listing

Publication Analysis

Top Keywords

free astaxanthin
24
extraction free
12
astaxanthin mixture
12
dodecane extract
12
astaxanthin
10
selective extraction
8
haematococcus culture
8
tandem solvent
8
solvent process
8
dodecane
8

Similar Publications

Effect of astaxanthin and carvacrol co-encapsulated emulsion and chitosan on the physicochemical, rheological, and antimicrobial properties in nitrite-free meat spread.

Food Chem

December 2024

Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:

The quality and safety of meat products are critical concerns in the food industry, and consumer demand for clean-label products is increasing. To meet these needs, this study aimed to develop a nitrite-free meat spread using an astaxanthin (0.04 wt%) and carvacrol (15 wt%) co-encapsulated emulsion (AE) and chitosan.

View Article and Find Full Text PDF

This study evaluates, for the first time, the reducing capacity, radical scavenger activity, and antitumor and anti-inflammatory effects of chitosan, astaxanthin, and bio-phenols extracted from the exoskeleton of Sicilian , the most widespread species of invasive crayfish in the Mediterranean region. Among the extracted compounds, astaxanthin exhibited the highest antioxidant activity in all assays. Chitosan and polyphenols demonstrated reducing and radical scavenging activity; chitosan showed significant ferric ion reducing capacity in the FRAP test, while bio-phenolic compounds displayed notable radical scavenging activity in the DPPH and ABTS assays.

View Article and Find Full Text PDF

Multidimensional Characterization of the Physiological State of Hematococcuspluvialis Using Scanning Structured Illumination Super-Resolution Microscopy.

Anal Chem

December 2024

Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

(HP) is a freshwater alga known for its ability to accumulate the potent antioxidant astaxanthin, which has extensive applications in aquaculture, pharmaceuticals, and cosmetics. Astaxanthin rapidly accumulates under unfavorable environmental conditions. However, the mechanisms of astaxanthin accumulation under various stress conditions remain unclear.

View Article and Find Full Text PDF

Astaxanthin, a lipid-soluble carotenoid, is widely recognized for its health-promoting properties. However, its use in functional foods is limited due to its low water solubility, chemical instability, and poor bioavailability. This study evaluated the potential of esterified starch-stabilized emulsions as astaxanthin carriers.

View Article and Find Full Text PDF

Pumpkin seed protein as a carrier for Astaxanthin: Molecular characterization of interactions and implications for stability.

Food Chem

December 2024

Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil. Electronic address:

This study investigated pumpkin seed protein (PSP) as a carrier for astaxanthin (AST). Interaction mechanisms revealed through fluorescence spectroscopy and molecular docking, showed that hydrogen bonds and Van der Waals forces form the PSP-AST complex. AST binding altered PSP's secondary structure, increasing α-helix (7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!