Although alterations in the function of the neurotransmitter system have been implicated in the pathology of Alzheimer's disease (AD), the mechanisms that underlie this pathological change are not well understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a key protease in the generation of beta-amyloid, an important trigger protein in the pathogenesis of AD. The expression and activity of BACE1 are increased in the brains of sporadic AD patients, and a role for BACE1 in neurotransmission has been suggested recently. This study examines whether BACE1 plays a role in regulated exocytosis in PC12 cells. Treatment of PC12 cells with a beta-secretase inhibitor reduced stimulus-dependent secretion of neurotransmitters, suggesting a potential role of BACE1 in regulated exocytosis. Using transfected human growth hormone as a reporter for a regulated secretory pathway in PC12 cells, we found that the transient overexpression of BACE1 increased basal secretion in the absence of a stimulus and reduced stimulus-dependent secretion in intact PC12 cells. In digitonin-permeabilized PC12 cells, an overexpression of BACE1 enhanced the Ca2+-independent and ATP-independent component of the secretory pathway. Furthermore, expression of the glycosylation-deficient mutant of BACE1, BACE1N354Q, led to an elevation of basal secretions over that by BACE1 wild-type, suggesting a role of BACE1 glycosylation in basal secretion. These results demonstrate an unknown role for BACE1 in secretion, and suggest that elevated levels of BACE1 in AD brains may contribute to the altered neurotransmitter pathology of AD through stimulation of spontaneous basal secretion under resting conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2007.01.082 | DOI Listing |
In Vitro Model
February 2024
IFIBYNE-UBA-CONICET, Buenos Aires, Argentina.
In this Highlights article, we present insights into the use of simple cell lines in neuroinflammation research, highlighting key findings from our recent investigations. Simple cell lines, including HEK, PC12, SHSY5Y, and N2a cells, provide valuable insights into critical signaling pathways and hidden facets of the neuroinflammatory landscape. Focusing on specific outcomes, including the impact of interleukin-6 (IL-6) and acid-sensing ion channels (ASIC1a), the study sheds light on neuroinflammatory processes.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404100, China.
Objectives: Anemoside B4 (AB4) is a multifunctional compound with anti-inflammatory, anti-apoptotic, antioxidant, antiviral, and autophagy-enhancing effects. However, the role of AB4 in cerebral ischemia/reperfusion injury (CIRI) remains obscure. This experiment aims to investigate the pharmacological effects of AB4 in CIRI.
View Article and Find Full Text PDFCureus
December 2024
Anesthesiology, Nihon University School of Medicine, Tokyo, JPN.
Background: Several cases of pheochromocytoma presenting with hypertensive crises after anesthesia induction, possibly caused by rocuronium injection, have been reported. Rocuronium has two compositions: rocuronium bromide (RB) in sodium acetate hydrate/acetic acid buffer solution (acetic acid vehicle) and RB in glycine/hydrochloric acid buffer solution (hydrochloric acid vehicle). This study assessed the effect of rocuronium composition on the release of catecholamine from PC-12 rat adrenal pheochromocytoma cells.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro.
O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!