Echovirus 6 strains derived from a clinical isolate show differences in haemagglutination ability and cell entry pathway.

Virus Res

Centre National de Référence des Entérovirus, Laboratoire de Virologie, Centre de Biologie et de Pathologie Est, Institut de Microbiologie, Hospices Civils de Lyon, 69677 Bron, France.

Published: December 2007

Two echovirus 6 (EV6) strains were isolated from a clinical sample after successive sub-cultures in PLC (human hepatocellular carcinoma) and HeLa (human cervical adenocarcinoma) cells. The first strain retained its haemagglutinating capacity (HAEV6) while the second became non-haemagglutinating (NHAEV6). Virus binding assay showed that HAEV6 was capable of binding to DAF-expressing cells but not NHAEV6 confirming the role of DAF in EV6 haemagglutination. The lack of competition between the two viral strains during coinfections suggested that each strain used a different cell entry pathway. We provide evidence showing that HAEV6 used preferentially the lipid raft-dependent caveolae pathway, whereas NHAEV6 followed the clathrin-mediated pathway. Comparison of the sequences of HAEV6 and NHAEV6 revealed five amino acid changes in the VP1, VP2 and VP3 capsid proteins distributed in domains which are known to be highly immunogenic or suggested to be involved in receptor binding, virion stability and pathogenicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2007.05.006DOI Listing

Publication Analysis

Top Keywords

cell entry
8
entry pathway
8
echovirus strains
4
strains derived
4
derived clinical
4
clinical isolate
4
isolate differences
4
differences haemagglutination
4
haemagglutination ability
4
ability cell
4

Similar Publications

The plasticity of plant cells underlies their wide capacity to regenerate, with increasing evidence in plants and animals implicating cell-cycle dynamics in cellular reprogramming. To investigate the cell cycle during cellular reprogramming, we developed a comprehensive set of cell-cycle-phase markers in the Arabidopsis root. Using single-cell RNA sequencing profiles and live imaging during regeneration, we found that a subset of cells near an ablation injury dramatically increases division rate by truncating G1 phase.

View Article and Find Full Text PDF

Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.

View Article and Find Full Text PDF

SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19.

View Article and Find Full Text PDF

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Mifepristone achieves tumor suppression and ferroptosis through PR/p53/HO1/GPX4 axis in meningioma cells.

J Neurooncol

January 2025

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Purpose: This study explores the effects of mifepristone on the proliferation, motility, and invasion of malignant and benign meningioma cells, aiming to identify mifepristone-sensitive types and investigate the underlying molecular mechanisms.

Methods: IOMM-Lee and HBL-52 meningioma cells were treated with 0, vehicle control (VC), 5, 10, 20, 40, and 80 μM of mifepristone for 12, 24, 48, 72, and 96 h. Proliferation was assessed via CCK8 assay, while motility and invasion were measured using wound scratch and transwell assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!