Oxidoreductase, morphogenesis, extracellular matrix, and calcium ion-binding gene expression in streptozotocin-induced diabetic rat heart.

Am J Physiol Endocrinol Metab

Pulmonary, Critical Care and Sleep Division, Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.

Published: September 2007

Diabetes has far-ranging effects on cardiac structure and function. Previous gene expression studies of the heart in animal models of type 1 diabetes concur that there is altered expression of genes involved in lipid and protein metabolism, but they diverge with regard to expression changes involving many other functional groups of genes of mechanistic importance in diabetes-induced cardiac dysfunction. To obtain additional information about these controversial areas, genome-wide expression was assessed using microarrays in left ventricle from streptozotocin-diabetic and normal rats. There were 261 genes with statistically significant altered expression of at least +/-1.5-fold, of which 124 were increased and 137 reduced by diabetes. Gene ontology assignment testing identified several statistical significantly overrepresented groups among genes with altered expression, which differed for increased compared with reduced expression. Relevant gene groups with increased expression by diabetes included lipid metabolism (P < 0.001, n = 13 genes, fold change 1.5 to 14.6) and oxidoreductase activity (P < 0.001, n = 17, fold change 1.5 to 4.6). Groups with reduced expression by diabetes included morphogenesis (P < 0.00001, n = 28, fold change -1.5 to -5.1), extracellular matrix (P < 0.02, n = 9, fold change -1.5 to -3.9), cell adhesion (P < 0.05, n = 10, fold change -1.5 to -2.7), and calcium ion binding (P < 0.01, n = 13, fold change -1.5 to -3.0). Array findings were verified by quantitative PCR for 36 genes. These data combined with previous findings strengthen the evidence for diabetes-induced cardiac gene expression changes involved in cell growth and development, oxidoreductase activity, and the extracellular matrix and also point out other gene groups not previously identified as being affected, such as those involved in calcium ion homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00191.2007DOI Listing

Publication Analysis

Top Keywords

fold change
24
change -15
16
extracellular matrix
12
gene expression
12
altered expression
12
expression
11
expression changes
8
groups genes
8
diabetes-induced cardiac
8
reduced expression
8

Similar Publications

Background: Chemical derivatization is a common technique in liquid chromatography-mass spectrometry (LC-MS) metabolomics used to improve the ionizability and chromatographic properties of metabolites in complex biological samples. This process facilitates better detection and separation of a wide array of compounds. The reagent 2-(4-boronobenzyl) isoquinolin-2-ium bromide (BBII), developed as a glucose labeling reagent for matrix-assisted laser desorption/ionization MS, enhances ionization for glucose and other hydroxyl metabolites.

View Article and Find Full Text PDF

Antifibrotic potential of Reserpine (alkaloid) targeting Keap1/Nrf2; oxidative stress pathway in CCl-induced liver fibrosis.

Chem Biol Interact

January 2025

Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan. Electronic address:

The death rate due to liver cancer approaches 2 million annually, the majority is attributed to fibrosis. Currently, there is no efficient, safe, non-toxic, and anti-fibrotic drug available, suggesting room for better drug discovery. The current study aims to evaluate the anti-fibrotic role of reserpine, an alkaloid plant compound against CCl-induced liver fibrosis.

View Article and Find Full Text PDF

Verona-integron-metallo-β-lactamase (VIM-2) is one of the most widespread class B β-lactamase responsible for β-lactam resistance. Although active-site residues help in metal binding, the residues nearing the active-site possess functional importance. Here, to decipher the role of such residues in the activity and stability of VIM-2, the residues E146, D182, N210, S207, and D213 were selected through in-silico analyses and substituted with alanine using site-directed mutagenesis.

View Article and Find Full Text PDF

Conceptual Framework: The Surgical Pause is a rapid, scalable strategy for health care systems to optimize perioperative outcomes for high-risk, frail patients considering elective surgery. The first and most important step is to screen for frailty, thereby identifying the 5% to 10% of patients at most risk for postoperative complications, loss of independence, institutionalization, and mortality. The second step is to take action to improve outcomes.

View Article and Find Full Text PDF

Objective: To identify clusters of women with similar trajectories of breast density change over four longitudinal assessments and to examine the association between these trajectories and the subsequent risk of breast cancer.

Design: Retrospective cohort study.

Setting: Data from the national breast cancer screening programme, which is embedded in the National Health Insurance Service database in Korea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!