Studies of the role of sex in evolution typically involve a longitudinal comparison of a single ancestor to several intermediate descendants and to one terminally evolved descendant after many generations of adaptation under a given selective regime. Here we take a complementary, statistical approach to sex in evolution, by describing the distribution of phenotypic similarity in a population of yeast F1 meiotic recombinants. By applying graph theory to fitness measurements of thousands of Saccharomyces cerevisiae recombinants treated with 10 mechanistically distinct, growth-inhibitory small-molecule perturbagens (SMPs), we show that the network of phenotypic similarity among F1 recombinants exhibits a scale-free degree distribution. F1 recombinants are often phenotypically unique and sometimes exceptional, and their fitness strengths are unevenly distributed across the 10 compound treatments. By contrast, highly phenotypically similar F1 recombinants constitute failing hubs that display below-average fitness across all compound treatments and are candidate substrates for purifying selection. Comparison of the F1 generation with the parental strains reveals that (i) there is a specialist more fit in any given single condition than any of the parents but (ii) only rarely are there generalists that exhibit greater fitness than both parental strains across a majority of conditions. This analysis allows us to evaluate and to gain better theoretical understanding of the costs and benefits of sex in the F1 generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1965551PMC
http://dx.doi.org/10.1073/pnas.0704037104DOI Listing

Publication Analysis

Top Keywords

sex evolution
8
phenotypic similarity
8
compound treatments
8
parental strains
8
recombinants
5
quantifying fitness
4
fitness distributions
4
distributions phenotypic
4
phenotypic relationships
4
relationships recombinant
4

Similar Publications

The adaptive value of recombination in resolving intralocus sexual conflict by gene duplication.

Proc Biol Sci

January 2025

Department of Environmental and Life Sciences, Karlstad University, Karlstad 651 88, Sweden.

Recombination plays a key role in increasing the efficacy of selection. We investigate whether recombination can also play a role in resolving adaptive conflicts at loci coding for traits shared between the sexes. Errors during recombination events resulting in gene duplications may provide a long-term evolutionary advantage if those loci also experience sexually antagonistic (SA) selection since, after duplication, sex-specific expression profiles will be free to evolve, thereby reducing the load on population fitness and resolving the conflict.

View Article and Find Full Text PDF

Parasites have their strongest impact on fitness when host defences deplete resources needed for other critical life-history stages, such as development, breeding or migration. Among birds, one greatly neglected stage that could be altered by parasites is post-juvenile moult (PJM), through which yearling juvenile birds replace their fast-generated, low-quality juvenile feathers with adult-like feathers after leaving the nest. The earlier the birds complete PJM, the earlier they will be prepared to withstand forthcoming challenges, such as adverse winter conditions or migration.

View Article and Find Full Text PDF

On average men are taller and more muscular than women, which confers on them advantages related to female choice and during physical competition with other men. Sexual size dimorphisms such as these come with vulnerabilities due to higher maintenance and developmental costs for the sex with the larger trait. These costs are in keeping with evolutionary theory that posits large, elaborate, sexually selected traits are signals of health and vitality because stressor exposure (e.

View Article and Find Full Text PDF

Diabetes mellitus (DM) leads to a more rapid development of DM cardiomyopathy (dbCM) and progression to heart failure in women than men. Combination of high-fat diet (HFD) and freshly-injected streptozotocin (STZ) has been widely used for DM induction, however emerging data shows that anomer-equilibrated STZ produces an early onset and robust DM model. We designed a novel protocol utilising a combination of multiple doses of anomer-equilibrated STZ injections and HFD to develop a stable murine DM model featuring dbCM analogous to humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!