Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Members of the minichromosome maintenance (MCM) family have pivotal roles in many biological processes. Although originally studied for their role in DNA replication, it is becoming increasingly apparent that certain members of this family are multifunctional and also play roles in transcription, cohesion, condensation, and recombination. Here we provide a genetic dissection of the mcm5 gene in Drosophila that demonstrates an unexpected function for this protein. First, we show that homozygotes for a null allele of mcm5 die as third instar larvae, apparently as a result of blocking those replication events that lead to mitotic divisions without impairing endo-reduplication. However, we have also recovered a viable and fertile allele of mcm5 (denoted mcm5(A7)) that specifically impairs the meiotic recombination process. We demonstrate that the decrease in recombination observed in females homozygous for mcm5(A7) is not due to a failure to create or repair meiotically induced double strand breaks (DSBs), but rather to a failure to resolve those DSBs into meiotic crossovers. Consistent with their ability to repair meiotically induced DSBs, flies homozygous for mcm5(A7) are fully proficient in somatic DNA repair. These results strengthen the observation that members of the prereplicative complex have multiple functions and provide evidence that mcm5 plays a critical role in the meiotic recombination pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950621 | PMC |
http://dx.doi.org/10.1534/genetics.107.073551 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!