Vascular remodeling rather than intimal thickening is the most important determinant of luminal loss in cardiac graft arteriosclerosis. The impact of donor-transmitted atherosclerotic lesions on alloimmune-mediated arterial injury in an experimental setting is not known. We investigated this issue in a chimeric model of human coronary artery grafts to immunodeficient mouse recipients reconstituted with allogeneic human peripheral blood mononuclear cells. Rejecting grafts demonstrated robust intimal expansion, outward vascular remodeling, and variable lumen loss. There was no significant relationship between preexistent atherosclerosis, gender, and age of the artery donors vs. the degree of alloimmune-induced changes in vessel morphology. Our experimental findings, in a system without the potentially confounding variable of immunosuppressive drugs, are in agreement with the majority of clinical studies that alloimmune-mediated intimal injury and vascular remodeling is independent of preexisting coronary atherosclerosis. Our results support the concept of extending the criteria for organ donors to include modest coronary atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.tp.0000264560.51845.67DOI Listing

Publication Analysis

Top Keywords

vascular remodeling
16
human coronary
8
coronary artery
8
artery grafts
8
grafts immunodeficient
8
immunodeficient mouse
8
mouse recipients
8
independent preexisting
8
coronary atherosclerosis
8
alloimmune-mediated vascular
4

Similar Publications

Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies.

ACS Appl Mater Interfaces

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network.

View Article and Find Full Text PDF

Lung fibrosis, characterized by chronic and progressive scarring, has no cure. Hallmarks are the accumulation of myofibroblasts and extracellular matrix, as well as vascular remodeling. The crosstalk between myofibroblasts and vasculature is poorly understood, with conflicting reports on whether angiogenesis and vessel density are increased or decreased in lung fibrosis.

View Article and Find Full Text PDF

Mobilization of subcutaneous fascia contributes to the vascularization and function of acellular adipose matrix via formation of vascular matrix complex.

Mater Today Bio

February 2025

The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.

Regenerative biomaterials are commonly used for soft-tissue repair in both pre-clinical and clinical settings, but their effectiveness is often limited by poor regenerative outcomes and volume loss. Efficient vascularization is crucial for the long-term survival and function of these biomaterials in vivo. Despite numerous pro-vascularization strategies developed over the past decades, the fundamental mechanisms of vascularization in regenerative biomaterials remain largely unexplored.

View Article and Find Full Text PDF

Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling.

View Article and Find Full Text PDF

Endothelial TRIM35-Regulated MMP10 Release Exacerbates Calcification of Vascular Grafts.

Adv Sci (Weinh)

January 2025

Clinical Research Center, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China.

Vascular calcification is a highly regulated process in cardiovascular disease (CVD) and is strongly correlated with morbidity and mortality, especially in the adverse stage of vascular remodeling after coronary artery bypass graft surgery (CABG). However, the pathogenesis of vascular graft calcification, particularly the role of endothelial-smooth muscle cell interaction, is still unclear. To test how ECs interact with SMCs in artery grafts, single-cell analysis of wild-type mice is first performed using an arterial isograft mouse model and found robust cytokine-mediated signaling pathway activation and SMC proliferation, together with upregulated endothelial tripartite motif 35 (TRIM35) expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!