Background, Aim And Scope: During the last decades ecological conditions in West Africa have dramatically changed. Very evident is the climate change, which has resulted in a southward shift of the climate zones, e.g. a spread of the desert (Sahara) into the Sahelian zone. After the drought period of the early 1970s and 1980s, livestock density increased resulting in an intensification of grazing pressure. This anthropogenous phenomenon leads to similar landscape changes as those caused by the climate. Only very few investigations exist on vegetation dynamics, climate changes and land use changes for the Sudanian zone. The paper presents data on changes of precipitation, of land use, of the geographical range of species, and of the composition of the flora, which have to be regarded as proofs of the sahelisation of large areas of the Sudanian zone.
Materials And Methods: Area of investigation: Burkina Faso. Precipitation data analysis: precipitation data from 67 stations; time series analysis and geo-statistical spatial interpolation. Analysis of land use change: Landsat satellite MSS and ETM+ data, acquired for two different dates between 1972 and 2001 analyzed by the software ERDAS/IMAGINE version 8.6 and ArcView 3.2 with the Spatial Analyst extension. Intensive ground truthing (160 training areas). Inventory of the flora: based on the data of the Herbarium Senckenbergianum (FR) in Frankfurt, Germany, and of the herbarium of the university of Ouagadougou (OUA), Burkina Faso, as well as on various investigations on the vegetation of Burkina Faso carried out in the years 1990 to 2005 by the team of the senior author. Life form analysis of the flora: based on the inventory of permanent plots.
Results And Discussion: Precipitation: Remarkable latitudinal shift of isohyets towards the South translates to a general reduction of average rainfall in great parts of the country. The last decade (1990-1999) shows some improvement, however, the more humid conditions of the 1950's and 1960's are not yet established again. Landcover change: In the study region the extent of arable fields and young fallows increased during the last 30 years from 580 km(2) in 1972 to 2870 km(2) in 2001. This means an average land cover conversion rate of 0.9% per year for the 6 departments considered. Change of the distribution of Sahelian and Sudanian species: Several species, mentioned in older literature as strictly Sahelian, today also occur in the Sudanian zone. Parallel to the spread of former strictly Sahelian species into the Sudanian zone, some former Sahelo-Sudanian species have withdrawn from the Sahel. Changes of the life form spectra of the flora: Considering their life form spectra, the flora of heavily grazed and of protected areas in the Sudanian zone show great differences. On areas intensively grazed the percentage of therophytes is evidently higher than on protected areas. Just the opposite is true for the phanerophytes. Their percentage is higher on the protected area than on the grazed zones. At the first glance, it is obvious to link the changes in flora and vegetation with the climate changes that have occurred during the last five decades (decrease of annual precipitation). However, not only climatic conditions have changed, but also population has increased, the percentage of land intensively used for agriculture and pasturing has increased and the time for soil regeneration today is much shorter than it was some decades ago. Thus, the landscape of the Sudanian zone has become a more Sahelian character. A comparison of the flora of an intensively used area of the Sudanian zone with that of a protected area shows a remarkable change in the life form spectra. The spectrum of the intensively used area is almost identical with that of the typical Sahelian flora. This comparison shows that the anthropogenic influence plays a greater role in the sahelisation of the Sudanian zone than the climate change.
Conclusion: Climate change and anthropogenic influence both, lead to a sahelisation of landscape and flora. Thus in many parts of the Sudanian zone of West Africa sahelisation phenomena will remain and even increase independently from the reestablishment of the more humid climate conditions of the 1950ies.
Recommendations And Perspectives: In order to maintain some parts of the characteristic Sudanian landscape with its characteristic flora and vegetation, the number and size of protected areas should be augmented. For all protected areas it has to be ensured, that protection is reality, i.e. respected an understood by local people, not only fiction. As long as the enlargement of intensively used areas continues the sahelisation of flora, vegetation and landscape will continue too.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1065/espr2007.02.388 | DOI Listing |
Sci Rep
January 2025
Center for Economic and Social Studies, Documentation and Research (CEDRES), Thomas Sankara University (UTS), 12 BP 417, Ouagadougou 12, Burkina Faso.
Soil degradation is a major cause of agricultural productivity decrease in sub-Saharan Africa. In Burkina Faso, efforts to reduce this environmental issue has emerged since several decades. However, most of the techniques developed are rarely adopted by farmers.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, D-53115, Bonn, Germany.
Climate change significantly challenges smallholder mixed crop-livestock (MCL) systems in sub-Saharan Africa (SSA), affecting food and feed production. This study enhances the SIMPLACE modeling framework by incorporating crop-vegetation-livestock models, which contribute to the development of sustainable agricultural practices in response to climate change. Applying such a framework in a domain in West Africa (786,500 km) allowed us to estimate the changes in crop (Maize, Millet, and Sorghum) yield, grass biomass, livestock numbers, and greenhouse gas emission in response to future climate scenarios.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2024
Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland.
Background: Malaria remains a climate-driven public health issue in Burkina Faso, yet the interactions between climatic factors and malaria interventions across different zones are not well understood. This study estimates time delays in the effects of climatic factors on malaria incidence, develops forecasting models, and assesses their short-term forecasting performance across three distinct climatic zones: the Sahelian zone (hot/arid), the Sudano-Sahelian zone (moderate temperatures/rainfall); and the Sudanian zone (cooler/wet).
Methods: Monthly confirmed malaria cases of children under five during the period 2015-2021 were analyzed using Bayesian generalized autoregressive moving average negative binomial models.
Genes (Basel)
October 2024
Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal.
Significant progress in malaria control has been achieved through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), raising hopes for malaria elimination. However, emerging insecticide resistance threatens these gains. This study assessed the susceptibility of populations to public health insecticides, examined the frequencies of , , and mutations, and explored their associations with phenotypic resistance in Dielmo and Ndiop, Senegal.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
Cashew trees ( L.) are planted for primarily their nuts, but they also generate apples which are mostly thrown away due to their astringent taste. The current study aimed to explore the possible utilization of cashew apple by-products (CABP) in West Africa as an alternative feedstuff for small ruminants' nutrition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!