A method that use kernel independent component analysis (KICA) and support vector regression (SVR) was proposed for estimation of source ultraviolet (UV) spectra profiles and simultaneous determination of polycomponents in mixtures. In KICA-SVR procedure, the UV source spectra profiles were estimated using KICA, then the mixing matrix of the components were calculated using the estimated sources, and the calibration model was build using SVR based on the calculated mixing matrix. A simulated UV dataset of three-component mixtures was used to test the ability of KICA for estimating source spectra profiles from spectra data of mixtures. It was found that KICA has the potential power to estimate pure UV spectra profiles, and correlation coefficient of estimated sources correspond to the real adopted ones are better compared with that by FastICA and Infomax ICA. An UV dataset of polycomponent vitamin B was processed using the proposed KICA-SVR method. The results show that the estimated source spectra profiles are correlative with the real UV spectra of the components and chemically interpretable, and accurate results were obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2007.05.004DOI Listing

Publication Analysis

Top Keywords

spectra profiles
24
source spectra
16
spectra
9
estimation source
8
profiles simultaneous
8
simultaneous determination
8
ultraviolet spectra
8
spectra data
8
kernel independent
8
independent component
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!