Experimental evidence points increasingly to the importance of posttranslational processes such as phosphorylation and translocation in the molecular circadian clocks of many organisms. We develop a mathematical model of the Drosophila circadian clock that incorporates the emerging details of the timing of nuclear translocation of the PERIOD and TIMELESS proteins. Most models assume that these proteins enter the nucleus as a complex, but recent experiments suggest that they in fact enter the nucleus separately. Our model reproduces observed patterns of intracellular localization of PERIOD and TIMELESS during light-dark cycles and in constant darkness, as well as phenotypes of several clock mutants. We also use the model to demonstrate how the Drosophila clock can exhibit robust oscillations with constant mRNA levels of period or timeless, and propose a possible mechanism for oscillations in double-rescue experiments of per(01)-tim(01) mutants. The model also explains (via posttranslational processes) the counter-intuitive observation that total dCLOCK levels are at their lowest at the circadian time when active nuclear dCLOCK must be peaking in order to activate transcription of other clock genes, implying that for dCLOCK a posttranslationally generated rhythm is more important than the transcriptionally generated rhythm. These results support the idea that posttranslational processes play key roles in generating as well as modulating robust circadian oscillations. While it appears that posttranslational mechanisms alone are not sufficient to generate rhythms in Drosophila, posttranslational mechanisms can greatly amplify a very weak transcriptional rhythm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2007.04.013 | DOI Listing |
Pathogens
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.
View Article and Find Full Text PDFLife (Basel)
January 2025
Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania.
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
As a crucial post-translational modification (PTM), protein ubiquitination mediates the breakdown of particular proteins, which plays a pivotal role in a large number of biological processes including plant growth, development, and stress response. The ubiquitin-proteasome system (UPS) consists of ubiquitin (Ub), ubiquitinase, deubiquitinating enzyme (DUB), and 26S proteasome mediates more than 80% of protein degradation for protein turnover in plants. For the ubiquitinases, including ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), the FBK (F-box Kelch repeat protein) is an essential component of multi-subunit E3 ligase SCF (Skp1-Cullin 1-F-box) involved in the specific recognition of target proteins in the UPS.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute of Biomedical Chemistry, 119121 Moscow, Russia.
Background: This study aims to analyze the exploration degree of popular model organisms by utilizing annotations from the UniProtKB (Swiss-Prot) knowledge base. The research focuses on understanding the genomic and post-genomic data of various organisms, particularly in relation to aging as an integral model for studying the molecular mechanisms underlying pathological processes and physiological states.
Methods: Having characterized the organisms by selected parameters (numbers of gene splice variants, post-translational modifications, etc.
Biomolecules
January 2025
Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!