SCL-GFP transgenic zebrafish: in vivo imaging of blood and endothelial development and identification of the initial site of definitive hematopoiesis.

Dev Biol

King's College London, The Randall Division of Cell and Molecular Biophysics, School of Biomedical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK.

Published: July 2007

The bHLH transcription factor SCL plays a central role in the generation of hematopoietic cells in vertebrates. We modified a PAC containing the whole zebrafish scl locus, inserting GFP into the first coding exon of scl. In germline-transgenic zebrafish generated using this construct, GFP expression completely recapitulates the endogenous expression of scl in blood, endothelium and CNS. We performed in vivo timelapse imaging of blood and endothelial precursor migration at the single-cell level and show that these cells migrate from the posterior lateral plate mesoderm to their site of differentiation in the intermediate cell mass. The anterior lateral plate domain of GFP expression gives rise to primitive macrophages and the blood vessels of the head. In later embryos, GFP expression identifies clusters of hematopoietic cells that develop between the dorsal aorta and posterior cardinal veins after primitive erythrocytes have entered circulation. Two treatments that block definitive hematopoiesis (treatment with dioxin (TCDD), and injection of an antisense morpholino oligonucleotide targeted to runx1) ablate these hematopoietic clusters. This indicates that these clusters represent the first site of definitive hematopoiesis in zebrafish. This site is anatomically homologous to the proposed source of hematopoietic stem cells in amniotes, the aorta-gonad-mesonephros (AGM) region. A second transgenic line, containing the promoter of scl driving GFP, lacks expression in the definitive clusters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2007.04.002DOI Listing

Publication Analysis

Top Keywords

definitive hematopoiesis
12
gfp expression
12
imaging blood
8
blood endothelial
8
site definitive
8
hematopoietic cells
8
lateral plate
8
scl
5
gfp
5
expression
5

Similar Publications

Purpose: Clonal hematopoiesis (CH) has been associated with a variety of adverse outcomes, most notably hematologic malignancy and ischemic cardiovascular disease. A series of recent studies also suggest that CH may play a role in the outcomes of patients with solid tumors, including breast cancer. Here, we review the clinical and biological data that underlie potential connections between CH, inflammation, and breast cancer, with a focus on the prevalence and impact of clonal hematopoiesis of indeterminate potential in patients with breast cancer.

View Article and Find Full Text PDF

Functional diversity of cardiac macrophages in health and disease.

Nat Rev Cardiol

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.

Article Synopsis
  • Macrophages are a significant part of the heart's structure and play different roles in both healthy and diseased states, originating from either embryonic or definitive hematopoiesis.
  • The two main populations of cardiac macrophages can be distinguished by the presence of the CCR2 receptor, with embryonic-derived ones involved in tissue maintenance, while CCR2 macrophages are linked to inflammation and damage.
  • Recent advancements in single-cell RNA sequencing and spatial transcriptomics have deepened our understanding of macrophage diversity and their interactions within the heart, offering potential new pathways for therapeutic targets and diagnostics.
View Article and Find Full Text PDF

Background: Erythroid cells contribute to embryonic organ development and adult tissue repair supplying oxygen to tissues. During mouse development, the primitive erythroid cells produced in the extraembryonic blood islands of the yolk sac begin to circulate as immature and nucleated erythroblasts with the onset of cardiac contractions around embryonic day 9.5 (E9.

View Article and Find Full Text PDF

X-linked sideroblastic anemia (XLSA) is a congenital anemia caused by mutations in ALAS2, a gene responsible for heme synthesis. Treatments are limited to pyridoxine supplements and blood transfusions, offering no definitive cure except for allogeneic hematopoietic stem cell transplantation, only accessible to a subset of patients. The absence of a suitable animal model has hindered the development of gene therapy research for this disease.

View Article and Find Full Text PDF

Haematopoietic stem and progenitor cells (HSPCs) arise from the aorta-gonad-mesonephros and migrate to the caudal haematopoietic tissue (CHT) in zebrafish, where nascent HSPCs undergo tightly controlled proliferation and differentiation to promote definitive haematopoiesis. Effective expansion of HSPCs requires the coordination of well-established vesicle trafficking systems and appropriate transcription factors. However, the underlying molecules are yet to be identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!