Background: Temperature, rainfall and humidity have been widely associated with the dynamics of malaria vector population and, therefore, with spread of the disease. However, at the local scale, there is a lack of a systematic quantification of the effect of these factors on malaria transmission. Further, most attempts to quantify this effect are based on proxy meteorological data acquired from satellites or interpolated from a different scale. This has led to controversies about the contribution of climate change to malaria transmission risk among others. Our study addresses the original question of relating meteorological factors measured at the local scale with malaria infection, using data collected at the same time and scale.
Methods: 676 children (6-59 months) were selected randomly from three ecologically different sites (urban and rural). During weekly home visits between December 1, 2003, and November 30, 2004, fieldworkers tested children with fever for clinical malaria. They also collected data on possible confounders monthly. Digital meteorological stations measured ambient temperature, humidity, and rainfall in each site. Logistic regression was used to estimate the risk of clinical malaria given the previous month's meteorological conditions.
Results: The overall incidence of clinical malaria over the study period was 1.07 episodes per child. Meteorological factors were associated with clinical malaria with mean temperature having the largest effect.
Conclusion: Temperature was the best predictor for clinical malaria among children under five. A systematic measurement of local temperature through ground stations and integration of such data in the routine health information system could support assessment of malaria transmission risk at the district level for well-targeted control efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913509 | PMC |
http://dx.doi.org/10.1186/1471-2458-7-101 | DOI Listing |
Cureus
December 2024
Clinical Pathology and Laboratory Department, Bekaa Hospital, Bekaa, LBN.
Malaria, a mosquito-borne disease caused by five plasmodium species, still has a life-threatening risk worldwide. Clinical manifestations can range from mild nonspecific symptoms to severe disease. In non-endemic regions, sporadic cases frequently pose significant challenges to health workers as delayed diagnosis can lead to serious consequences and even death.
View Article and Find Full Text PDFJ Med Chem
January 2025
Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse cedex, France.
To challenge the multidrug resistance of malaria parasites, new hybrid compounds were synthesized and evaluated against laboratory strains and multidrug-resistant clinical isolates. Among these hybrids, emoquine-1 was the most active on proliferative , with IC values in the range of 20-55 nM and a high selectivity index with respect to mammalian cells. This drug retained its activity on several multiresistant field isolates from Cambodia and Guiana, exhibited no cross-resistance to artemisinin, and is also very active against the quiescent stage of the artemisinin-resistant parasites, three features that constitute the gold standard for new antimalarial drugs.
View Article and Find Full Text PDFSci Rep
January 2025
Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain.
We recently characterized the potent antiplasmodial activity of the aggregated protein dye YAT2150, whose presumed mode of action is the inhibition of protein aggregation in the malaria parasite. Using single-dose and ramping methods, assays were done to select Plasmodium falciparum parasites resistant to YAT2150 concentrations ranging from 3× to 0.25× the in vitro IC of the compound (in the two-digit nM range) and performed a cross-resistance assessment in P.
View Article and Find Full Text PDFJ Mol Cell Biol
January 2025
Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.
Expansion of atypical memory B cells (aMBCs) was demonstrated in malaria-exposed individuals. To date, the generation of P. vivax-specific aMBCs and their function in protective humoral immune responses is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!