Unfolding of ribonuclease A on silica nanoparticle surfaces.

Nano Lett

Rensselaer Nanotechnology Center, Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

Published: July 2007

This paper reports on the unfolding behavior of ribonuclease A (RNase A) on silica nanoparticle surfaces and quantitively demonstrates that nanoscale size and surface curvature play key roles in influencing the stability of adsorbed proteins. Urea denaturation analyses showed that the thermodynamic stability of RNase A decreased upon adsorption onto the nanoparticles, with greater decrease on larger nanoparticles. The stability changes of RNase A correlate well with the changes in the protein-nanoparticle interactions, which increase as the surface contact area and surface charge interaction increases. This study, therefore, provides fundamental information on the effect of nanoscale surfaces on protein structure and function.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl070777rDOI Listing

Publication Analysis

Top Keywords

silica nanoparticle
8
nanoparticle surfaces
8
unfolding ribonuclease
4
ribonuclease silica
4
surfaces paper
4
paper reports
4
reports unfolding
4
unfolding behavior
4
behavior ribonuclease
4
ribonuclease rnase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!