The yeast Saccharomyces cerevisiae produces two 14-3-3 proteins, Bmh1 and Bmh2, whose exact functions have remained unclear. Here, we performed a comprehensive proteomic analysis using multistep immunoaffinity purification and mass spectrometry and identified 271 yeast proteins that specifically bind to Bmh1 and -2 in a phosphorylation-dependent manner. The identified proteins have diverse biochemical functions and cellular roles, including cell signaling, metabolism, and cell cycle regulation. Importantly, there are a number of protein subsets that are involved in the regulation of yeast physiology through a variety of cell signaling pathways, including stress-induced transcription, cell division, and chitin synthesis at the cell wall. In fact, we found that a yeast mutant deficient in Bmh1 and -2 had defects in signal-dependent response of the MAPK (Hog1 and Mpk1) cascade and exhibited an abnormal accumulation of chitin at the bud neck. We propose that Bmh1 and -2 are common regulators of many cell signaling modules and pathways mediated by protein phosphorylation and regulate a variety of biological events by coordinately controlling the identified multiplex phosphoprotein components.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi700501tDOI Listing

Publication Analysis

Top Keywords

cell signaling
12
proteomic analysis
8
yeast saccharomyces
8
saccharomyces cerevisiae
8
cell
6
yeast
5
analysis vivo
4
vivo 14-3-3
4
14-3-3 interactions
4
interactions yeast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!