Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation.

J Biomed Mater Res A

Department of Materials Science and Engineering, Jinan University, Guangzhou, China, 510632.

Published: December 2007

In this study, novel nanoparticles were prepared by polyelectrolyte complexation between heparin and chitosan on simple and mild conditions. The size, polydispersity, zeta potential, and morphology of the nanoparticles were characterized. Entrapment studies of the nanoparticles were conducted using bovine serum albumin (BSA) as a model protein. Specifically, the effects of the pH value of chitosan solution, chitosan molecular weight (MW), chitosan concentration, heparin concentration, and BSA concentration on the nanoparticle size, the nanoparticle yield, and BSA entrapment were studied in detail. We found that, the size and the yield of the nanoparticles were affected by the above factors. The nanoparticle yield played a crucial role in BSA entrapment, namely, more nanoparticles could encapsulate more BSA. At length, suitably high pH value of chitosan solution, moderate chitosan MW, increasing both heparin concentration and chitosan concentration at an optimal concentration ratio favored more nanoparticles formed and consequently a higher BSA entrapment efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.31407DOI Listing

Publication Analysis

Top Keywords

bsa entrapment
12
prepared polyelectrolyte
8
polyelectrolyte complexation
8
chitosan solution
8
chitosan concentration
8
heparin concentration
8
nanoparticle yield
8
chitosan
7
nanoparticles
6
bsa
6

Similar Publications

Supramolecular dextran/polyamine phosphate nanocapsules with smart responsiveness for encapsulation of therapeutics.

J Colloid Interface Sci

December 2024

Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy. Electronic address:

The polyallylamine hydrochloride (PAH) polymer is here functionalized with branched and biocompatible polysaccharide dextran (DEX) molecules. Covalent conjugation of DEX to PAH has been achieved through a straightforward reductive amination approach, allowing for a controlled number of DEX chains per PAH polymer (PAH:DEX, n = 0.1, 0.

View Article and Find Full Text PDF

Enhanced efficacy of quercetin and taxifolin encapsulated with pH-responsive injectable BSA hydrogel for targeting triple-negative breast cancer cells.

Int J Biol Macromol

December 2024

Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India. Electronic address:

Quercetin (QUE) and Taxifolin (TAX) are natural flavonoids with diverse biological activities, holding promise for cancer treatment. However, their clinical application is limited by their poor solubility and bioavailability. Self-assembled bovine serum albumin (BSA) hydrogels have demonstrated biocompatibility and proteolytic stability, making them suitable platforms for drug delivery.

View Article and Find Full Text PDF

The current research attempted to address the suitability of bioactive extract entrapped in albumin-decorated nanostructured lipid carriers (NLCs) as a promising "adjuvant" in improving tumour penetration for multiple antitumour therapy. The new hybrid albumin-decorated NLCs were characterised based on, e.g.

View Article and Find Full Text PDF

Self-assembled lipid nanoparticles containing Gd-chelating lipids are a new type of positive magnetic resonance imaging contrast agents (MRI CAs). High molecular weight imposes reduced molecular reorientation () and corresponding longer reorientation correlation times (), finally resulting in overall high relaxivity () of such contrast agents. Therefore, we report nanoassemblies based on two types of amphiphile molecules: glyceryl monooleate (GMO) as a matrix embedded with DTPA-bis(stearylamide) and its gadolinium salt (DTPA-BSA-Gd) as a Gd-chelating lipid, stabilized by surfactant Pluronic F127 molecules.

View Article and Find Full Text PDF

Homogeneous light-initiated chemiluminescence technology (LICA) is widely used in clinical diagnostics due to the advantages of high sensitivity, minimal reagent usage, and no need for washing. Luminescent microspheres receive singlet oxygen emitted by photosensitive microspheres to generate optical signals. Therefore,O-initiated luminescent nanospheres are crucial, but there are few reports on the preparation of O-initiated luminescent nanospheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!