The regulation of the tyrosine phosphorylation of key signaling molecules by tyrosine kinases and phosphatases is essential for BCR-triggered signaling cascades during B cell selection process. We used the non-selective tyrosine phosphatase inhibitor vanadate to study the importance of the late regulation of the tyrosine phosphorylation for BCR-triggered G1 growth arrest and apoptosis in Ramos-BL B cells. Vanadate induces G2M growth arrest in a dose-dependent manner and prevents BCR-triggered apoptosis. Vanadate-induced upregulation of the tyrosine phosphorylation is concomitant with increased expression of cyclin B and inhibition of caspase-3 activation and PARP cleavage. The anti-apoptotic effect of vanadate was observed even when added up to 6 hours after the treatment of Ramos-BL B cells with anti-IgM. Vanadate increases BCR-triggered tyrosine phosphorylation of the cytosolic tyrosine phosphatases, SHP-1 and SHP-2 after 24 hours. Co-stimulation with anti-CD40 prevents anti-IgM-triggered tyrosine phosphorylation of these phosphatases and up-regulates the expression of SHP-1. We conclude that the regulation of the tyrosine phosphatase activity is indispensable for BCR-triggered execution of the apoptosis in Ramos-BL B cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08820130601069814 | DOI Listing |
Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence.
View Article and Find Full Text PDFSignaling pathways play key roles in many important biological processes such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. Use of phospho-specific antibodies facilitates analysis of signaling pathway regulation and activity.
View Article and Find Full Text PDFTyrosine phosphorylation is an important post-translational modification that regulates many biochemical signaling networks in multicellular organisms. To date, 46,000 tyrosines have been observed in human proteins, but relatively little is known about the function and regulation of most of these sites. A major challenge has been producing recombinant phospho-proteins in order to test the effects of phosphorylation.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
The proliferation of CAR-T cells was hindered and cannot play its killing function well in solid tumors. And yet the regulatory mechanism of CAR-T cell proliferation is not fully understood. Here, we showed that recombinant expression of CD19CAR in T cells significantly increased the basal activation level of CAR-T cells and LCK activation.
View Article and Find Full Text PDFPLoS One
January 2025
VA Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!