Platinum blue as an alternative to uranyl acetate for staining in transmission electron microscopy.

Arch Histol Cytol

Division of Genome Morphology, Department of Functional, Morphological and Regulatory Science, Faculty of Medicine, Tottori University, Yonago, Japan.

Published: April 2007

This paper introduces an aqueous solution of platinum blue (Pt-blue) as an alternative to uranyl acetate (UA) for staining in transmission electron microscopy (TEM). Pt-blue was prepared from a reaction of cis-dichlorodiamine-platinum (II) (cis-platin) with thymidine. When Pt-blue was dried on a microgrid and observed by TEM it showed a uniform appearance with tiny particles less than 1 nm in diameter. The effect of Pt-blue as an electron stain was then examined not only for positive staining of conventional ultrathin resin sections and counterstaining of post-embedding immuno-electron microscopy but also for negative staining. In ultrathin sections of the rat liver and renal glomerulus, Pt-blue provided good contrast images, especially in double staining combined with a lead stain (Pb). Almost all cell organelles were clearly observed with high contrast in these sections. Glycogen granules in the hepatic parenchymal cells were particularly electron dense in Pt-blue stained sections compared with those treated with UA. In longitudinal and transverse sections of budding influenza A viruses, a specific arrangement of rod-like structures, which correspond to the ribonucleoprotein complexes, was clearly shown in each virion stained with Pt-blue and Pb. When post-embedding immunoelectron microscopy was performed in ultrathin sections of HeLa cells embedded in Lowicryl K4M, the localization of Ki-67 protein was sufficiently detected even after Pt-blue and Pb staining. The present study also revealed that Pt-blue could be used for the negative staining of E. coli, allowing the visualization of a flagellum. These findings indicate that Pt-blue is a useful, safe, and easily obtainable electron stain that is an alternative to UA for TEM preparations.

Download full-text PDF

Source
http://dx.doi.org/10.1679/aohc.70.43DOI Listing

Publication Analysis

Top Keywords

pt-blue
10
platinum blue
8
alternative uranyl
8
uranyl acetate
8
acetate staining
8
staining transmission
8
transmission electron
8
electron microscopy
8
electron stain
8
negative staining
8

Similar Publications

Background: The soft X-ray projection microscope has been developed for high resolution imaging of hydrated bio-specimens. Image blurring due to X-ray diffraction can be corrected by an iteration procedure. The correction is not efficient enough for all images, especially for low contrast chromosome images.

View Article and Find Full Text PDF

Background: Low-vacuum scanning electron microscopy (LV-SEM) is applied to diagnostic renal pathology.

Methods: To demonstrate the usefulness of LV-SEM and to clarify the optimal conditions of pathology samples, we investigated the alterations of glomerular basement membrane (GBM) and podocytes in control and experimental active Heymann nephritis (AHN) rats by LV-SEM.

Results: On week 15 following induction of AHN, spike formation on GBM with diffuse deposition of IgG and C3 developed.

View Article and Find Full Text PDF

Here, we describe the characteristics of a Pt-blue complex [Pt (2-atp) (H O)(OH)] (2-atp: 2-aminothiophenol) as a prodrug for its DNA-binding properties and its use in cancer therapy. The nature of the interaction between the Pt-blue complex and DNA was evaluated based on spectroscopic measurements, the electronic absorption spectra, thermal behavior, viscosity, fluorometric titration, and agarose gel electrophoresis. Our results suggested that the compound was able to partially intercalate DNA and appeared to induce both single- and double-stranded breaks (DBS) on DNA in vitro, but no DSBs in cells.

View Article and Find Full Text PDF

Invited for this month's cover picture are the groups of Prof. Alfonso Polo and Dr. Albert Poater at the Universitat de Girona, as well as their collaborators from the Universitat Autònoma de Barcelona and the Institute of Chemical Research of Catalonia.

View Article and Find Full Text PDF

Despite intensive treatment, steroid-resistant nephrotic syndrome (NS) often progresses to endstage renal disease. Therefore, a more accurate and quick histological diagnosis is required to properly treat such patients. The aim of this study was to introduce a novel approach to the histological diagnosis of pediatric NS by low vacuum scanning electron microscopy (LVSEM) and to describe the morphological differences in glomeruli between steroid-sensitive and steroid-resistant NS specimens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!