Differential effects of glutathione S-transferase pi (GSTP1) haplotypes on cell proliferation and apoptosis.

Carcinogenesis

Human Disease and Genomics Research Group, Institute of Science and Technology in Medicine, Keele University, University Hospital of North Staffordshire, Stoke-on-Trent, Staffordshire, ST4 7QB, UK.

Published: November 2007

Expression of the glutathione S-transferase, GSTP1, is associated with phase 1 detoxification of the products of oxidative stress. Recently, GSTP1 expression has been implicated in the regulation of cell proliferation and apoptosis through direct interaction with the c-Jun N-terminal kinase, (JNK). GSTP1 is polymorphic and allelic variants have been associated with disease susceptibility and clinical outcome. However, the influence of GSTP1 alleles on proliferation and apoptosis has not been studied previously. To investigate this, we have examined the effects of inducible expression of wild-type GSTP1*A and mutant GSTP1*C haplotypes on cell proliferation and apoptosis in NIH3T3 fibroblasts. Cells expressing GSTP1*A displayed increased doubling times and a delayed G1-S phase transition compared with cells expressing GSTP1*C. Both GSTP1*A and GSTP1*C haplotypes protected cells from undergoing apoptosis when exposed to oxidative stress. However, analysis of JNK status revealed that only GSTP1*C expression led to a reduction in JNK activity compared with GSTP1*A-expressing cells and non-induced cells. We further examined the effect of GSTP1 alleles on colony-forming efficiency (CFE) in soft agar following exposure to oxidative stress and found that GSTP1*A-expressing clones had increased CFE compared with non-induced and GSTP1*C-expressing clones. Our data suggest that GSTP1 alleles have differential effects on proliferation and apoptosis; GSTP1*A reduces cellular proliferation and protects against apoptosis through a JNK-independent mechanism. In contrast, GSTP1*C does not influence cellular proliferation but protects cells from apoptosis through JNK-mediated mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgm135DOI Listing

Publication Analysis

Top Keywords

proliferation apoptosis
20
cell proliferation
12
oxidative stress
12
gstp1 alleles
12
differential effects
8
glutathione s-transferase
8
s-transferase gstp1
8
haplotypes cell
8
apoptosis
8
gstp1*c haplotypes
8

Similar Publications

l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.

View Article and Find Full Text PDF

Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.

View Article and Find Full Text PDF

Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.

Cell Biol Toxicol

January 2025

Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.

Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.

View Article and Find Full Text PDF

Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction.

Hum Mol Genet

January 2025

Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China.

Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis.

View Article and Find Full Text PDF

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!