Lactococcus lactis IL1403, a lactic acid bacterium widely used for food fermentation, is often exposed to stress conditions. One such condition is exposure to copper, such as in cheese making in copper vats. Copper is an essential micronutrient in prokaryotes and eukaryotes but can be toxic if in excess. Thus, copper homeostatic mechanisms, consisting chiefly of copper transporters and their regulators, have evolved in all organisms to control cytoplasmic copper levels. Using proteomics to identify novel proteins involved in the response of L. lactis IL1403 to copper, cells were exposed to 200 muM copper sulfate for 45 min, followed by resolution of the cytoplasmic fraction by two-dimensional gel electrophoresis. One protein strongly induced by copper was LctO, which was shown to be a NAD-independent lactate oxidase. It catalyzed the conversion of lactate to pyruvate in vivo and in vitro. Copper, cadmium, and silver induced LctO, as shown by real-time quantitative PCR. A copper-regulatory element was identified in the 5' region of the lctO gene and shown to interact with the CopR regulator, encoded by the unlinked copRZA operon. Induction of LctO by copper represents a novel copper stress response, and we suggest that it serves in the scavenging of molecular oxygen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1952056 | PMC |
http://dx.doi.org/10.1128/JB.00576-07 | DOI Listing |
Elife
December 2024
Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.
View Article and Find Full Text PDFGenetics
January 2025
Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04317, Germany.
Long, identical haplotypes shared between pairs of individuals, known as identity-by-descent (IBD) segments, result from recently shared co-ancestry. Various methods have been developed to utilize IBD sharing for demographic inference in contemporary DNA data. Recent methodological advances have extended the screening for IBD segments to ancient DNA (aDNA) data, making demographic inference based on IBD also possible for aDNA.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
Copper-based halides have attracted significant attention due to their unique photophysical properties and diverse coordination configurations. However, enhancing water stability and modulating structural transitions in cuprous halide materials remain challenging. In this work, we successfully synthesized three copper(I) halides, (CHP)CuBr (L1, [CHP] = hexyltriphenylphosphonium), (CHP)CuBr (L2), and (CHP)CuI (L3), via solvent volatilization, demonstrating exceptional water stability even after 27 days of submersion.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!