Membrane type 1 matrix metalloproteinase (MT1-MMP) is a protease produced by airway epithelial cells in various diseases. Since other MMPs are involved in bronchial epithelial repair, we investigated the role of MT1-MMP in naphthalene-induced small airway injury and repair in wild-type (WT) and MT1-MMP-knockout (KO) mice. The degree of injury was similar in both strains, but the MT1-MMP KO mice were unable to reconstitute a normal, fully differentiated airway epithelium 28 days after injury. MT1-MMP was required for the proliferative response in distal airway epithelial cells, resulting in decreased cell density and airway epithelial cell differentiation in MT1-MMP KO mice. Surprisingly, EGF-mediated signaling was unaltered in MT1-MMP KO mice and therefore unrelated to the proliferative response. However, keratinocyte growth factor receptor (KGFR) expression was significantly upregulated before the proliferative response and markedly less evident in the distal airway epithelium of MT1-MMP KO mice. These results indicate MT1-MMP is involved in KGFR expression and epithelial cell proliferation after acute airway injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00028.2007 | DOI Listing |
Expert Opin Emerg Drugs
January 2025
Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy.
Introduction: Severe asthma is a chronic airway disease characterized by many pathomechanisms known as endotypes. Biological therapies targeting severe asthma endotypes have significantly improved the treatment of this disease, thus remarkably bettering patient quality of life.
Areas Covered: This review aims to describe current biological therapies for severe asthma, highlighting emerging ones.
In Vitro Model
June 2024
In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea University, Sketty, Wales SA2 8PP UK.
Unlabelled: Owing to increased pressure from ethical groups and the public to avoid unnecessary animal testing, the need for new, responsive and biologically relevant in vitro models has surged. Models of the human alveolar epithelium are of particular interest since thorough investigations into air pollution and the effects of inhaled nanoparticles and e-cigarettes are needed. The lung is a crucial organ of interest due to potential exposures to endogenous material during occupational and ambient settings.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany.
Purpose: For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies.
Methods: Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650.
Ann Surg Oncol
January 2025
Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.
Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.
Dev Biol
January 2025
Department of Bioengineering, University of Texas at Dallas, Richardson, TX; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX. Electronic address:
During lung development, the embryonic airway originates as a wishbone-shaped epithelial tube, which undergoes a series of branching events to build the bronchial tree. This process depends crucially on cell proliferation and is thought to involve distinct branching modes: lateral branching, wherein daughter branches emerge along the length of a parent branch, and bifurcations, wherein the tip of a parent branch splits to form two new daughter branches. The developing airway is fluid-filled, and previous studies have shown that altered luminal pressure can influence rates of branching morphogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!