B-S transition in short oligonucleotides.

Biophys J

Lehrstuhl für Angewandte Physik & Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.

Published: October 2007

Stretching experiments with long double-stranded DNA molecules in physiological ambient revealed a force-induced transition at a force of 65 pN. During this transition between B-DNA and highly overstretched S-DNA the DNA lengthens by a factor of 1.7 of its B-form contour length. Here, we report the occurrence of this so-called B-S transition in short duplexes consisting of 30 basepairs. We employed atomic-force-microscope-based single molecule force spectroscopy to explore the unbinding mechanism of two short duplexes containing 30 or 20 basepairs by pulling at the opposite 5' termini. For a 30-basepair-long DNA duplex the B-S transition is expected to cause a length increase of 6.3 nm and should therefore be detectable. Indeed 30% of the measured force-extension curves exhibit a region of constant force (plateau) at 65 pN, which corresponds to the B-S transition. The observed plateaus show a length between 3 and 7 nm. This plateau length distribution indicates that the dissociation of a 30-basepair duplex mainly occurs during the B-S transition. In contrast, the measured force-extension curves for a 20-basepair DNA duplex exhibited rupture forces below 65 pN and did not show any evidence of a B-S transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1965448PMC
http://dx.doi.org/10.1529/biophysj.107.106112DOI Listing

Publication Analysis

Top Keywords

b-s transition
24
transition short
8
short duplexes
8
dna duplex
8
measured force-extension
8
force-extension curves
8
transition
7
b-s
6
short oligonucleotides
4
oligonucleotides stretching
4

Similar Publications

Directed Inward Migration of S-Vacancy in BiS QDs for Selective Photocatalytic CO to CHOH.

Adv Sci (Weinh)

January 2025

College of Materials Science and Engineering, National and Local Joint Engineering Research Center for Green Processing, Technology of Agricultural and Forestry Biomass, Central South University of Forestry and Technology, Changsha, 410004, China.

The directional migration of S-vacancy is beneficial to the separation of photogenerated carriers and the transition of electrons in semiconductors. In this study, Bi/BiS@carboxylic-cellulose (CC) photocatalyst with bionic chloroplast structure is obtained by electron beam irradiation to induce S-vacancy in BiS@CC. The results of CO photoreduction experiments demonstrate that the reduction rate of CO to CHOH by Bi/BiS@CC-450 samples is 10.

View Article and Find Full Text PDF

Oral diseases, both acute and chronic, of infectious or non-infectious etiology, represent some of the most serious medical problems in dentistry. Data from the literature increasingly indicate that changes in the oral microbiome, and therefore, the overgrowing of pathological microflora, lead to a variety of oral-localized medical conditions such as caries, gingivitis, and periodontitis. In recent years, compelling research has been devoted to the use of natural antimicrobial peptides as therapeutic agents in the possible treatment of oral diseases.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Introduction: Macranthoidin B is one of the primary and unique triterpenoid saponin metabolites from Hand. -Mazz, which is used to treat endometriosis (EMS) in traditional Chinese medicine. However, the effect of macranthoidin B remains unknown in EMS.

View Article and Find Full Text PDF

Currently, there are limited therapeutic options for patients with non-active secondary progressive multiple sclerosis. Therefore, real-world studies have investigated differences between patients with relapsing-remitting multiple sclerosis, non-active secondary progressive multiple sclerosis and active secondary progressive multiple sclerosis. Here, we explore patterns and predictors of transitioning between these phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!