We report seismic evidence for the transportation of water into the deep mantle in the subduction zone beneath northeastern Japan. Our data indicate that water is released from the hydrated oceanic crust at shallow depths (< approximately 100 kilometers) and then forms a channel of hydrated mantle material on top of the subducting plate that is the pathway for water into the deep mantle. Our result provides direct evidence that shows how water is transported from the ocean to the deep mantle in a cold subduction zone environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1140855 | DOI Listing |
Nat Commun
January 2025
Cnr-Istituto di Geologia Ambientale e Geoingegneria, Roma, Italy.
Volatiles (CO, HO) play a fundamental role in mantle melting beneath ocean spreading centers, but what role they play during the melt migration remains unknown. Using seismological data recorded by ocean-bottom seismometers, here we report the presence of deep earthquakes at 10-20 km depth in the mantle along the Mid-Atlantic Ridge axis, much below the brittle-ductile boundary. Syntheses of regional basaltic rock samples and their geochemical analyses indicate the presence of an abnormally high quantity of CO (~0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
The evolution of the lunar magnetic field can reveal the Moon's interior structure, thermal history, and surface environment. The mid-to-late-stage evolution of the lunar magnetic field is poorly constrained, and thus, the existence of a long-lived lunar dynamo remains controversial. The Chang'e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at midlatitude.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Frontiers Science Center for Deep-time Digital Earth, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
Oxidation of the sub-arc mantle driven by slab-derived fluids has been hypothesized to contribute to the formation of gold deposits in magmatic arc environments that host the majority of metal resources on Earth. However, the mechanism by which the infiltration of slab-derived fluids into the mantle wedge changes its oxidation state and affects Au enrichment remains poorly understood. Here, we present the results of a numerical model that demonstrates that slab-derived fluids introduce large amounts of sulfate (S) into the overlying mantle wedge that increase its oxygen fugacity by up to 3 to 4 log units relative to the pristine mantle.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China. Electronic address:
Archivesica marissinica is a dominant species inhabiting the Haima cold seep in the South China Sea. However, the composition, characterization and specific functions of conserved and unique shell matrix proteins (SMPs) in A. marissinica remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!