The labelling pattern of cellular phosphoinositides (PtdInsP(n)) was studied in Ehrlich ascites cells labelled in vivo for 24 h with myo-[2-(3)H]- or l-myo-[1-(3)H]inositol and exposed to anisotonic or isosmotic volume perturbations. In parallel experiments the cell volume ([(14)C]3-OMG space) was monitored. In hypotonic media the cells initially swelled osmotically and subsequently as expected showed a regulatory volume decrease (RVD) response. Concurrently, the cell content of PtdInsP(2) showed a marked, transient decrease and the content of PtdInsP a small, transient increase. The changes in PtdInsP(2) and PtdInsP content increased progressively with the extent of hypotonicity (in the range 1.00-0.50 relative osmolarity). No evidence was found for either hydrolysis of PtdInsP(2) or formation of PtdInsP(3). In hypertonic medium (relative osmolarity 1.50), cells initially shrank osmotically and subsequently as expected showed a small regulatory volume increase (RVI) response. Concurrently, the cell content of PtdInsP(2) showed a marked increase and the content of PtdInsP a small decrease, i.e. changes in the opposite direction of those seen in hypotonic media. In isosmotic media with high (100 mm) or low (0.8 mm) K(+) concentration, cells slowly swelled or shrank due to uptake or loss of isosmotic KCl. Under these conditions, with largely unchanged intracellular ionic strength, the cell content of PtdInsP(2) and PtdInsP remained constant. Our results show that PtdInsP(2) is not volume sensitive per se, and moreover that the regulatory volume adjustments in Ehrlich ascites cells are not mediated by PtdInsP(2) hydrolysis and its subsequent production of second messengers. The simplest interpretation of the observed effects would be that PtdInsP(2) is controlled by ionic strength, probably via activation/inhibition of phosphoinositide-specific phosphatases/kinases. In Ehrlich ascites cells, as shown previously, the opposing ion channels and transporters activated during RVD and RVI, respectively, are controlled with tight negative coordination by a common cell volume 'set-point' that is shifted in anisotonic media, but unchanged during cell swelling in isosmotic high K(+) medium. We hypothesize that PtdInsP(2) might orchestrate this 'set-point' shift.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075250 | PMC |
http://dx.doi.org/10.1113/jphysiol.2007.132308 | DOI Listing |
Sci Rep
December 2024
Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea.
Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.
View Article and Find Full Text PDFSci Rep
December 2024
School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.
View Article and Find Full Text PDFSci Rep
December 2024
College of Biological Sciences and Technology, YiLi Normal University, Yining, 835000, People's Republic of China.
Ice wine is produced from concentrated grape juice obtained by the natural freezing and pressing of grapes. The high sugar content of this juice has an impact on fermentation. To investigate the impact of the initial sugar concentration on the fermentation of ice wine, the initial sugar concentration of Vidal ice grape juice was adjusted to 370, 450, 500 and 550 g/L by the addition of glucose.
View Article and Find Full Text PDFSci Rep
December 2024
College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China.
VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis.
View Article and Find Full Text PDFSci Rep
December 2024
Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.
Extracellular vesicles (EVs), crucial mediators in cell-to-cell communication, are implicated in both homeostatic and pathological processes. Their detectability in easily accessible peripheral fluids like saliva positions them as promising candidates for non-invasive biomarker discovery. However, the lack of standardized methods for salivary EVs isolation greatly limits our ability to study them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!