The work of the CONRAD task group 5.2: research studies on biokinetic models.

Radiat Prot Dosimetry

Federal Office for Radiation Protection, Department of Radiation Protection and Health, 85762 Oberschleissheim, Germany.

Published: August 2008

The objective of this Task Group is the coordination of research studies on biokinetic models and the evaluation of the implications of new biokinetic models on dose assessment and safety standards. For this the new ICRP models, which will be used for a revision of ICRP Publications 30, 54, 68 and 78, are implemented into six different computer codes in five European countries and quality assured by intercomparison procedures. The work has started with the implementation of the new ICRP Alimentary Tract Model. New systemic models and the new NCRP wound model will follow. The work also includes the evaluation of experimental results in terms of formulation by the new model structures and a quality assurance of model formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncm257DOI Listing

Publication Analysis

Top Keywords

biokinetic models
12
task group
8
studies biokinetic
8
models
5
work conrad
4
conrad task
4
group studies
4
models objective
4
objective task
4
group coordination
4

Similar Publications

Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.

View Article and Find Full Text PDF

Thorium ore dust research applicable to mineral sands industry workers.

J Radiol Prot

January 2025

School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA.

Historically, radiation exposure to mineral sands workers arose primarily from intake of thorium associated with monazite dust generated in mineral separation plants. Research investigations in the 1990s provided greater insight into the characteristics of inhaled thorium ore dust and bioassay studies inferred that some workers had accumulated significant lung burdens of thorium. Recent changes to biokinetic models have increased the radiation dose assessed to arise from thorium intake, raising questions on the appropriateness of current assumptions used in exposure assessment and feasibility of further bioassay research.

View Article and Find Full Text PDF

Evidence for low bioavailability of dietary nanoparticulate cerium in a freshwater food chain.

Aquat Toxicol

December 2024

ANSTO, Nuclear Science and Technology Division, Lucas Heights, NSW 2234, Australia.

Radioactive Ce in ionic (I-Ce), nano (N-Ce, 11 ± 9 nm mean primary particle size ± standard deviation) and micron-sized (M-Ce, 530 ± 440 µm) forms associated with natural and artificial diets in natural river water and synthetic freshwater were used to measure the real-time biokinetics of dietary Ce assimilation in a freshwater food chain. The model food chain consisted of microalgae (Raphidocelis subcapitata), snails (Potamopyrgus antipodarum) and prawns (Macrobrachium australiense). Pulse-chase experiments showed that 91-100 % of all forms of cerium associated with all diets and water types were eliminated from the digestive system of the snail and prawn within 24 h, with no detectable cerium assimilation.

View Article and Find Full Text PDF

Inhibition of Neural Crest Cell Migration by Strobilurin Fungicides and Other Mitochondrial Toxicants.

Cells

December 2024

In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany.

Cell-based test methods with a phenotypic readout are frequently used for toxicity screening. However, guidance on how to validate the hits and how to integrate this information with other data for purposes of risk assessment is missing. We present here such a procedure and exemplify it with a case study on neural crest cell (NCC)-based developmental toxicity of picoxystrobin.

View Article and Find Full Text PDF

Analysis of biokinetic parameters reveals patterns in mercury accumulation across aquatic species.

Sci Total Environ

January 2025

Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, United States of America.

Article Synopsis
  • Mercury is a toxic substance that accumulates in fish, particularly in its organic form, methylmercury (MeHg), which poses risks to human health through contaminated fish consumption.
  • Understanding how mercury accumulates in aquatic species requires analyzing several biokinetic parameters, including uptake rate, assimilation efficiency, and efflux rate, which were studied across 38 fish and 34 aquatic invertebrate species, yielding 502 total data points.
  • The study found that the form of mercury and various environmental factors like water type and organism weight significantly influenced these parameters, highlighting differences between fish and invertebrates, and challenging previous assumptions about the impact of environmental conditions on mercury accumulation in aquatic ecosystems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!