Working memory effects on semantic processing: priming differences in pars orbitalis.

Neuroimage

Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, University of California, Los Angeles 760 Westwood Plaza, Los Angeles, CA 90095, USA.

Published: August 2007

Both working memory (WM) and controlled (attention-mediated) semantic processing functions have been thought to operate as limited capacity systems, but the possible link between these processes has not been investigated. We found that increased WM load attenuated semantic priming (i.e., reduced the response time advantage for semantically primed relative to unprimed items) and changed fMRI signal intensities in brain regions usually associated with both WM (dorsolateral prefrontal cortex) and controlled semantic retrieval (inferior frontal gyrus [IFG], pars orbitalis). fMRI signal changes in dorsolateral prefrontal cortex were negatively correlated with signal changes in pars orbitalis. The findings suggest that controlled semantic processing and working memory share neural system resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2007.04.050DOI Listing

Publication Analysis

Top Keywords

working memory
12
semantic processing
12
pars orbitalis
12
fmri signal
8
dorsolateral prefrontal
8
prefrontal cortex
8
controlled semantic
8
signal changes
8
semantic
5
memory effects
4

Similar Publications

Tonal short-term memory has been positively associated with both incidentally acquired absolute pitch memory (e.g., for popular songs) and explicitly learned absolute pitch (AP) categories; however, the relationship between these constructs has not been directly tested within the same individuals.

View Article and Find Full Text PDF

Modelling of pollutants provides valuable insights into air quality dynamics, aiding exposure assessment where direct measurements are not viable. Machine learning (ML) models can be employed to explore such dynamics, including the prediction of air pollution concentrations, yet demanding extensive training data. To address this, techniques like transfer learning (TL) leverage knowledge from a model trained on a rich dataset to enhance one trained on a sparse dataset, provided there are similarities in data distribution.

View Article and Find Full Text PDF

The effect of occlusion on the visual working memory pointer-system.

Cortex

January 2025

The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

To access its online representations, visual working memory (VWM) relies on a pointer-system that creates correspondence between objects in the environment with their memory representations. This pointer-system allows VWM to modify its representations using a process called updating. When the pointer is invalidated, however, VWM triggers a process called resetting in which the no longer relevant representation and pointer are replaced.

View Article and Find Full Text PDF

The astroglial glutamate transporter in the hippocampus and anterior cingulate cortex (ACC) is critically involved in chronic pain-induced cognitive and psychiatric abnormalities. We have previously reported that LDN-212320, a glutamate transporter-1 (GLT-1) activator, attenuates complete Freund's adjuvant (CFA)-induced acute and chronic nociceptive pain. However, the cellular and molecular mechanisms underlying GLT-1 modulation in the hippocampus and ACC during chronic pain-induced cognitive deficit-like and anxiety-like behaviors remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!