Increase in cochlear microphonic potential after toluene administration.

Hear Res

Laboratoire de Neurotoxicité, Institut National de Recherche et de Sécurité, Avenue de Bourgogne, BP 27 Vandoeuvre, 54501 Cedex, France.

Published: August 2007

AI Article Synopsis

  • Toluene exposure has been linked to hearing loss in both humans and animals, with studies indicating it disrupts outer hair cells in the cochlea, leading to changes in auditory function.
  • In an experiment with anesthetized rats, toluene injections increased cochlear microphonic potential (CMP) amplitude, suggesting an intensity-dependent effect on the auditory system.
  • Additionally, the findings revealed that toluene may mimic the effects of acetylcholine receptor antagonists, indicating a potential alteration in the protective acoustic reflexes of the inner and middle ear.

Article Abstract

Human and animal studies have shown that toluene can cause hearing loss. In the rat, the outer hair cells are first disrupted by the ototoxicant. Because of their particular sensitivity to toluene, the cochlear microphonic potential (CMP) was used for monitoring the cochlea activity of anesthetized rats exposed to both noise (band noise centered at 4 kHz) and toluene. In the present experiment, the conditions were specifically designed to study the toluene effects on CMP and not those of its metabolites. To this end, 100-microL injections of a vehicle containing different concentrations of solvent were made into the carotid artery connected to the tested cochlea. Interestingly, an injection of 116.2-mM toluene dramatically increased in the CMP amplitude (approximately 4 dB) in response to an 85-dB SPL noise. Moreover, the rise in CMP magnitude was intensity dependent at this concentration suggesting that toluene could inhibit the auditory efferent system involved in the inner-ear or/and middle-ear acoustic reflexes. Because acetylcholine is the neurotransmitter mediated by the auditory efferent bundles, injections of antagonists of cholinergic receptors (AchRs) such as atropine, 4-diphenylacetoxy-N-methylpiperidine-methiodide (mAchR antagonist) and dihydro-beta-erythroidine (nAchR antagonist) were also tested in this investigation. They all provoked rises in CMP having amplitudes as large as those obtained with toluene. The results showed for the first time in an in vivo study that toluene mimics the effects of AchR antagonists. It is likely that toluene might modify the response of protective acoustic reflexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2007.04.002DOI Listing

Publication Analysis

Top Keywords

toluene
10
cochlear microphonic
8
microphonic potential
8
study toluene
8
auditory efferent
8
acoustic reflexes
8
cmp
5
increase cochlear
4
potential toluene
4
toluene administration
4

Similar Publications

A potential link has been reported between skin exposure to aromatic amines, such as ortho-toluidine (OT) and 3,3'-dichloro-4,4'-diaminodiphenylmethane (MOCA), and bladder cancer cases observed in Japanese chemical factories. To evaluate this association, we explored the permeability of OT and MOCA through pig skin and investigated the subsequent changes in plasma and urine concentrations in rats following percutaneous exposure. Employing Yucatan micropig skin, we first executed a permeability test by affixing the skin to a diffusion cell and applying 14C-labeled OT or MOCA.

View Article and Find Full Text PDF

Inkjet-Printed Graphene-PEDOT:PSS Decorated with Sparked ZnO Nanoparticles for Application in Acetone Detection at Room Temperature.

Polymers (Basel)

December 2024

Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand.

This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.

View Article and Find Full Text PDF

A Health Risk Assessment of Workers Exposed to Organic Paint Solvents Used in the Korean Shipbuilding Industry.

Toxics

December 2024

Health and Safety Convergence Science Introduction, College of Health Science, Korea University, Seoul 02841, Republic of Korea.

In the shipbuilding industry, during the painting process, workers are exposed to various substances in paint, including organic solvents that can adversely affect their health. Most workplace exposures to organic solvents involve mixtures of organic compounds. Therefore, in this study, the hazard quotient (HQ) and hazard index (HI) were derived using data from the Workplace Environmental Monitoring Program in Korea for six organic solvents (xylene, n-butanol, ethylbenzene, isobutyl alcohol, toluene, and methylisobutyl ketone [MIBK]) commonly used in the steel shipbuilding industry.

View Article and Find Full Text PDF

Since automobiles are the primary means of transportation in modern society, the assessment of health effects from acute and chronic exposure to pollutants in automobiles is crucial. In this study, the concentration of volatile organic compounds (VOCs), carbonyl compounds, and odor-including substances in newly manufactured automobiles were analyzed, and exposure factors reflecting automobile user characteristics were selected for health risk assessment. Toluene exhibited the highest concentration (203.

View Article and Find Full Text PDF

Pyrolysis is recognized as a promising technology for waste plastics management. Although there have been many studies on pyrolysis of waste plastics, there is still a lack of in-depth research on the mechanism of synergistic effect between mixed plastics and the mechanism of product formation. In this paper, based on the pyrolysis characteristics of Polystyrene, Polyethylene, and mixed plastics (Polystyrene/Polyethylene), it is demonstrated that a synergistic effect exists in the co-pyrolysis of Polystyrene/Polyethylene and affects the pyrolysis behavior and pyrolysis products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!