Molecular basis for substrate-dependent transmembrane signaling in an outer-membrane transporter.

J Mol Biol

Chemistry and Biophysics Programs, Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA.

Published: July 2007

Transmembrane signaling events that propagate through receptors and transporters have critical roles in cellular function and regulation. In the Escherichia coli vitamin B(12) transporter, BtuB, substrate binding to the extracellular surface of the protein triggers the unfolding of an energy coupling motif at the periplasmic surface. Here, the molecular interactions mediating this substrate-dependent transmembrane signaling event were investigated in a novel way by combining a two mutant cycle analysis with site-directed spin labeling (SDSL). SDSL was used to monitor the unfolding and conformational equilibrium of the energy-coupling motif, and a thermodynamic two-mutant cycle analysis was used to estimate pair-wise interaction free energies for a pair of charged residues (D316 and R14) within the protein interior. The data indicate that D316 and R14 are critical to this structural transition. Substrate binding is shown to reduce the interaction free energy between these residues, thereby triggering the unfolding of the energy coupling motif of this membrane transporter. The result indicates that SDSL when used in combination with a mutant cycle analysis provides an approach to examine the molecular interactions mediating signaling events in membrane proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1997290PMC
http://dx.doi.org/10.1016/j.jmb.2007.05.040DOI Listing

Publication Analysis

Top Keywords

transmembrane signaling
12
cycle analysis
12
substrate-dependent transmembrane
8
signaling events
8
substrate binding
8
unfolding energy
8
energy coupling
8
coupling motif
8
molecular interactions
8
interactions mediating
8

Similar Publications

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus disease 2019 (COVID-19) outbreak. While mutations cause the emergence of new variants, the ancestral SARS-CoV-2 strain is unique among other strains. Various clinical parameters, the activity of cathepsin proteases, and the concentration of various proteins were measured in urine samples from COVID-19-negative participants and COVID-19-positive participants.

View Article and Find Full Text PDF

Antibody Responses and the Vaccine Efficacy of Recombinant Glycosyltransferase and Nicastrin Against .

Pathogens

January 2025

National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.

Schistosomiasis is a neglected tropical disease and the second most common parasitic disease after malaria. While praziquantel remains the primary treatment, concerns about drug resistance highlight the urgent need for new drugs and effective vaccines to achieve sustainable control. Previous proteomic studies from our group revealed that the expression of glycosyltransferase and nicastrin as proteins was higher in single-sex males than mated males, suggesting their critical roles in parasite reproduction and their potential as vaccine candidates.

View Article and Find Full Text PDF

ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in . But the function of in nitrate signaling remains not entirely clear. This study aimed to investigate the role of in nitrate-dependent plant growth and nitrate signaling.

View Article and Find Full Text PDF

VX-770, C-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity.

Int J Mol Sci

January 2025

Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!