Extracts from the roots and rhizomes of black cohosh (Cimicifuga racemosa) are widely used as dietary supplements to alleviate menopausal symptoms. State-of-the-art quality control measures involve phytochemical fingerprinting of the triterpene glycosides for species identification and chemical standardization by HPLC. In the course of developing materials and methods for standardization procedures, the major C. racemosa triterpene glycoside (1) was isolated and initially thought to be cimicifugoside (2). Detailed HR-LC-MS and 1D and 2D NMR analysis of 1 and 2 unambiguously revealed that 1 is the chlorine-containing derivative of 2, namely, 25-chlorodeoxycimigenol-3-O-beta-d-xyloside. Accordingly, HPLC profiles of black cohosh preparations require revision of the assignments of the chlorinated (1) and nonchlorinated (2) pair. Besides explaining the substantial shift in polarity (DeltatR[RP-18] ca. 20 min), 25-deoxychlorination opens a new pathway of structural diversification in triterpene glycoside chemistry. As chemical conversion of 2 into 1 could be demonstrated, deoxychlorination may be interpreted as artifact formation. Simultaneously, however, it is a potentially significant pathway for the gastric in vivo conversion ("nature's prodrug") of the relatively polar triterpene glycosides into significantly less polar chlorinated derivatives with altered pharmacological properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596075PMC
http://dx.doi.org/10.1021/np0700319DOI Listing

Publication Analysis

Top Keywords

triterpene glycosides
12
cimicifuga racemosa
8
racemosa triterpene
8
black cohosh
8
triterpene glycoside
8
triterpene
5
chlorination diversifies
4
diversifies cimicifuga
4
glycosides extracts
4
extracts roots
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!