AI Article Synopsis

  • The mouse limb deformity (ld) phenotype is linked to the loss of Gremlin due to mutations in Grem1 or the loss of a transcriptional control region (GCR) in the Fmn1 gene.
  • A new allele of ld was identified from a complete deletion of Fmn1, resulting in viable and fertile homozygous mice, while also causing variable effects on Gremlin expression in different tissues.
  • The study suggests that the primary role of the Ld GCR is to activate Grem1 in limb buds, with minimal long-range transcriptional effects on nearby genes.

Article Abstract

The mouse limb deformity (ld) phenotype is characterized by developmental failure of distal limb structures often associated with renal anomalies. It is caused by loss of the BMP-antagonist Gremlin in the limb buds, either through mutation of Grem1, or by loss of a transcriptional global control region (GCR) located in the neighboring Fmn1 gene. In this report, we describe a new allele of ld due to complete deletion of Fmn1, including its GCR. Unlike many other ld strains, these mice are viable and fertile as homozygotes. As expected, this genomic deletion causes loss of Gremlin in the developing limb buds, but effects in other tissues are variable. Specifically, Grem1 expression is retained in the developing lung and kidney, whereas expression is lost from the corresponding adult tissues. In contrast, expression in the brain appears to be unaffected by loss of the GCR. To provide information about long-range transcriptional effects of this region, effects of the deletion on the transcription of neighboring genes were also investigated. This analysis revealed that alterations in neighboring genes do occur, but only in a limited fashion. These data indicate that the predominant effect of the Ld GCR is to activate the expression of Grem1 in the developing limb buds, although it may serve a minor role in long-range transcriptional effects that extend beyond Fmn1 and Grem1.

Download full-text PDF

Source
http://dx.doi.org/10.1387/ijdb.062249epDOI Listing

Publication Analysis

Top Keywords

transcriptional effects
12
limb buds
12
limb deformity
8
global control
8
control region
8
developing limb
8
long-range transcriptional
8
neighboring genes
8
limb
6
effects
5

Similar Publications

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.

View Article and Find Full Text PDF

A mitochondria-to-nucleus regulation mediated by the nuclear-translocated mitochondrial lncRNAs.

PLoS Genet

January 2025

Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.

A bidirectional nucleus-mitochondria communication is essential for homeostasis and stress. By acting as critical molecules, the nuclear-encoded lncRNAs (nulncRNAs) have been implicated in the nucleus-to-mitochondria anterograde regulation. However, role of mitochondrial-derived lncRNAs (mtlncRNAs) in the mitochondria-to-nucleus retrograde regulation remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!