The use of a bis(terpyridine)ruthenium(ii) complex for peptide labeling (Ru-CO labeling) supplied high intensity peaks in mass spectrometry (MS) analysis that overcame the contribution of protonation or sodiated adduction to peptides. Ru-CO-labeled insulin A- and B-chains were detected simultaneously in comparable peak abundance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The mass spectra of chymotryptic peptide fragments of Ru-CO-labeled insulin also simultaneously indicated both N-terminal fragment ions, and amino acid sequences were determined easily by matrix-assisted laser desorption/ionization post-source-decay (MALDI-PSD). The sensitivity of detecting Ru-CO-labeled peptide fragment ions was not dependent on the length or the sequences of the peptides. The Ru-CO labeling method was applied to tryptic myoglobin fragments. The method indicated that each fragment ion is detected nearly equal in abundance and enabled the desired fragment ions to be distinguished from matrix clusters or their in-source fragments in lower mass regions. The desired fragment ions can be found in the mass region higher than 670.70 (= Ru-CO). This method provided a high sequence coverage (96%) by peptide mass fingerprinting (PMF). Application of this method to a protein mixture (myoglobin, lysozyme and ubiquitin) successfully achieved high sequence-coverage characterization (>90%) of these proteins simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b610284k | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002, China College of Medicine and Health Sciences, China Three Gorges University Yichang 443002, China.
In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
MS Proteomics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary.
In recent years, alternative enzymes with varied specificities have gained importance in MS-based bottom-up proteomics, offering orthogonal information about biological samples and advantages in certain applications. However, most mass spectrometric workflows are optimized for tryptic digests. This raises the questions of whether enzyme specificity impacts mass spectrometry and if current methods for nontryptic digests are suboptimal.
View Article and Find Full Text PDFMass Spectrom Rev
January 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas, USA.
Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS.
View Article and Find Full Text PDFMolecules
December 2024
Centre for Research University Services (CeSAR), Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy.
2,8-Dithia-5-aza-2,6-pyridinophane () has been used as a receptor unit in the construction of the conjugated redox chemosensor 5-ferrocenylmethyl-2,8-dithia-5-aza-2,6-pyridinophane (). In order to further explore the coordination chemistry of , and comparatively, that of its structural analogue 2,11-dithia-5,8-diaza-2,6-pyridinophane (), featuring two secondary nitrogen atoms in the macrocyclic unit, the crystal structures of the new synthesised complexes [Pb()(ClO)]·½CHCN, [Cu()](ClO)·CHCN and [Cd()(NO)]NO were determined by X-ray diffraction analysis. The electrochemical response of towards the metal ions Cu, Zn, Cd, Hg, and Pb was investigated by cyclic voltammetry (CV) in CHCl/CHCN 0.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China. Electronic address:
The sensitive and accurate detection of copper ions is crucial for public health, medical research, and environmental monitoring. In this study, we developed a sensor based on template-assembly activation of the primer exchange reaction (PER) for the on-site detection of copper ions in blood. Copper ions triggered the assembly of two template fragments into a hairpin structure via a click-chemistry reaction, activating the PER.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!