The crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) from Escherichia coli complexed with Mg(2+), NADPH and fosmidomycin was solved at 2.2 A resolution. DXR is the key enzyme in the 2-C-methyl-D-erythritol 4-phosphate pathway and is an effective target of antimalarial drugs such as fosmidomycin. In the crystal structure, electron density for the flexible loop covering the active site was clearly observed, indicating the well ordered conformation of DXR upon substrate binding. On the other hand, no electron density was observed for the nicotinamide-ribose portion of NADPH and the position of Asp149 anchoring Mg(2+) was shifted by NADPH in the active site.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2335089 | PMC |
http://dx.doi.org/10.1107/S1744309107024475 | DOI Listing |
ACS Med Chem Lett
January 2025
Institute of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
Multidrug-resistant pathogens pose a major threat to human health, necessitating the identification of new drug targets and lead compounds that are not susceptible to cross-resistance. This study demonstrates that novel reverse thia analogs of the phosphonohydroxamic acid antibiotic fosmidomycin inhibit 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme for , , and that is absent in humans. Some novel analogs with large α-phenyl substituents exhibited strong inhibition across these three DXR orthologues, surpassing the inhibitory activity of fosmidomycin.
View Article and Find Full Text PDFMolecules
December 2024
School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan.
It is established that reverse hydroxamate analogs of fosmidomycin inhibit the growth of by inhibiting 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the non-mevalonate pathway, which is absent in humans. Recent biochemical studies have demonstrated that novel reverse fosmidomycin analogs with phenylalkyl substituents at the hydroxamate nitrogen exhibit inhibitory activities against DXR at the nanomolar level. Moreover, crystallographic analyses have revealed that the phenyl moiety of the -phenylpropyl substituent is accommodated in a previously unidentified subpocket within the active site of DXR.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands. Electronic address:
The enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyses the first step of the MEP pathway, a key process for isoprenoid biosynthesis in bacteria that is absent in humans, making it a promising drug target. We present the structure of Mycobacterium tuberculosis DXPS in its apo form, obtained through a soaking method that removes thiamine diphosphate (ThDP) and metals from pre-formed crystals. The apo structure had three regions with absence of electron density near the active site that are unique to the apo form of the enzyme.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
Isoprenoids comprise the largest group of plant specialized metabolites. 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is one of the major rate-limiting enzymes in their biosynthesis. The DXS family expanded structurally and functionally during evolution and is believed to have significantly contributed to metabolic complexity and diversity in plants.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China. Electronic address:
Polysaccharides and various secondary metabolites are the major bioactive ingredients in Bletilla striata tubers and their biosynthesis and accumulation are influenced by light intensity. However, the mechanisms underlying shading effects remain largely unknown. In the present study, we used a combined analysis of the physiology, metabolome, and transcriptome to investigate the physiological activities and bioactive component accumulation of B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!