Previous studies indicated that CAPS (calcium-dependent activator protein for secretion) functions as an essential component for the Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells. However, recent mouse knock-out studies suggested an alternative role in the vesicular uptake or storage of catecholamines. To genetically assess the functional role of CAPS, we characterized the sole Caenorhabditis elegans CAPS ortholog UNC-31 (uncoordinated family member) and determined its role in dense-core vesicle-mediated peptide secretion and in synaptic vesicle recycling. Novel assays for dense-core vesicle exocytosis were developed by expressing a prepro-atrial natriuretic factor-green fluorescent protein fusion protein in C. elegans. unc-31 mutants exhibited reduced peptide release in vivo and lacked evoked peptide release in cultured neurons. In contrast, cultured neurons from unc-31 mutants exhibited normal stimulated synaptic vesicle recycling measured by FM4-64 [N-(3-triethylammoniumpropyl)-4-(6-(4-diethylamino)phenyl)hexatrienyl)pyridinium dibromide] dye uptake. Conversely, UNC-13, which exhibits sequence homology to CAPS/UNC-31, was found to be essential for synaptic vesicle but not dense-core vesicle exocytosis. These findings indicate that CAPS/UNC-31 function is not restricted to catecholaminergic vesicles but is generally required for and specific to dense-core vesicle exocytosis. Our results suggest that CAPS/UNC-31 and UNC-13 serve parallel and dedicated roles in dense-core vesicle and synaptic vesicle exocytosis, respectively, in the C. elegans nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672138PMC
http://dx.doi.org/10.1523/JNEUROSCI.1466-07.2007DOI Listing

Publication Analysis

Top Keywords

dense-core vesicle
20
synaptic vesicle
20
vesicle exocytosis
20
vesicle
10
vesicle synaptic
8
caenorhabditis elegans
8
vesicle recycling
8
unc-31 mutants
8
mutants exhibited
8
peptide release
8

Similar Publications

Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1.

Biophys J

December 2024

Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT; Nanobiology Institute, Yale University, West Haven, CT; Molecular Biophysics and Biochemistry, Yale University, New Haven, CT; Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France; Wu Tsai Institute, Yale University. Electronic address:

Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood.

View Article and Find Full Text PDF

In the phylum Nemertea, the class Hoplonemertea (former Enopla) comprises the largest number of studied species with complex spermatozoa. Asteronemertes gibsoni Chernyshev, 1991, a nemertean species having a symbiotic relationship with sea stars, is characterized by complex filiform spermatozoa. Here, spermatogenesis and spermatozoon structure in A.

View Article and Find Full Text PDF

imaging of dynamic sub-cellular brain structures in is key to understanding several phenomena in neuroscience. However, a trade-off between spatial resolution, speed, photodamage, and setup complexity limits its implementation. Here, we designed and built a single objective light sheet microscope, customized for imaging of adult flies and optimized for maximum resolution.

View Article and Find Full Text PDF

Genetically-encoded markers for confocal visualization of single dense core vesicles.

Res Sq

October 2024

Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA.

Neuronal dense core vesicles (DCVs) store and release a diverse array of neuromodulators, trophic factors and bioamines. The analysis of single DCVs has largely been possible only using electron microscopy, which makes understanding cargo segregation and DCV heterogeneity difficult. To address these limitations, we developed genetically-encoded markers for DCVs that can be used in combination with standard immunohistochemistry and expansion microscopy, to enable single-vesicle resolution with confocal microscopy.

View Article and Find Full Text PDF

Recent gene expression studies have revealed about 10 different states of microglia, some of which are characteristic for Alzheimer-like amyloid plaque pathology. However, it is not presently known how these translate into morphological features that would reflect microglia interaction with amyloid plaques. With optimized conditions for confocal microscopy in amyloid plaque forming APP/PS1 transgenic mice we reveal new details of how microglia processes interact with amyloid plaques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!