Despite popular belief that the primary function of the thalamus is to "gate" sensory inputs by state, few studies have attempted to directly characterize the efficacy of such gating in the awake, behaving animal. I measured the efficacy of retinogeniculate transmission in the awake cat by taking advantage of the fact that many neurons in the lateral geniculate nucleus (LGN) are dominated by a single retinal input, and that this input produces a distinct event known as the S-potential. Retinal input failed to produce an LGN action potential half of the time. However, success or failure was powerfully tied to the recency of the S-potential. Short intervals tend to be successful and long intervals unsuccessful. For four of 12 neurons, the probability that a given S-potential could cause a spike exceeded 90% if that S-potential was preceded by an S-potential within the previous 10 ms (100 Hz). Whereas this temporal influence on efficacy has been demonstrated extensively in anesthetized animals, wakefulness is different in several ways. Overall efficacy is better in wakefulness than in anesthesia, the durations of facilitating effects are briefer in wakefulness, efficacy of long intervals is superior in wakefulness, and the temporal dependence can be briefly disrupted by altering background illumination. The last two observations may be particularly significant. Increased success at long intervals in wakefulness provides additional evidence that the spike code of the anesthetized animal is not the spike code of the awake animal. Altering retinogeniculate efficacy by altering visual conditions undermines the influence inter-S-potential interval might have in determining efficacy in the real world. Finally, S-potential amplitude, duration, and even slope are dynamic and systematic within wakefulness; providing further support that the S-potential is the extracellular signature of the retinal EPSP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00929.2006 | DOI Listing |
Invest Radiol
January 2025
From the Departments of Radiology (J.F.H., S.Y.C., J.-P.G., J.S., P.N., S.B.R., T.M.G.), Biomedical Engineering (S.B.R., T.M.G.), Medical Physics (S.Y.C., S.B.R., T.M.G.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, WI; and Department of Diagnostic and Interventional Radiology (J.F.H., J.-P.G.), University Hospital Würzburg, Würzburg, Germany.
Rationale And Objectives: Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol.
View Article and Find Full Text PDFPLoS Med
January 2025
Division of Infectious Diseases, Department of Medicine II, Medical Centre and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany.
Background: Self-reported health problems following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are common and often include relatively non-specific complaints such as fatigue, exertional dyspnoea, concentration or memory disturbance and sleep problems. The long-term prognosis of such post-acute sequelae of COVID-19/post-COVID-19 syndrome (PCS) is unknown, and data finding and correlating organ dysfunction and pathology with self-reported symptoms in patients with non-recovery from PCS is scarce. We wanted to describe clinical characteristics and diagnostic findings among patients with PCS persisting for >1 year and assessed risk factors for PCS persistence versus improvement.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098, Moscow, Russia.
Background: The effects of ionizing radiation (IR) involve a highly orchestrated series of events in cells, including DNA damage and repair, cell death, and changes in the level of proliferation associated with the stage of the cell cycle. A large number of existing studies in literature have examined the activity of genes and their regulators in mammalian cells in response to high doses of ionizing radiation. Although there are many studies, the research in effect of low doses of ionizing radiation remains limited.
View Article and Find Full Text PDFMatern Child Health J
January 2025
Tanzania Field Epidemiology and Laboratory Training Program, Tanzania Ministry of Health, Dodoma, Tanzania.
Introduction: Population risk for neural tube defects (NTDs) can be determined using red blood cell (RBC) folate. However, a paucity of biomarker and surveillance data among non-lactating, non-pregnant women of reproductive age (NPWRA) from Africa limits accurate assessment. Our study assessed folate and vitamin B12 status among non-lactating NPWRA and predicted population risk of NTDs in Tanzania.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany.
Purpose: This retrospective analysis evaluates baseline F-flotufolastat positron emission tomography (PET) parameters as prognostic parameters for treatment response and outcome in patients with metastatic castration-resistant prostate cancer (mCRPC) undergoing treatment with [Lu]Lu-PSMA-I&T.
Methods: A total of 188 mCRPC patients with baseline F-flotufolastat PET scans were included. Tumor lesions were semiautomatically delineated, with imaging parameters including volume-based and standardized uptake value (SUV)-based metrics.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!