Design and synthesis of highly potent and selective human peroxisome proliferator-activated receptor alpha agonists.

Bioorg Med Chem Lett

Tokyo New Drug Research Laboratories 1, Pharmaceutical Division, Kowa Co., LTD, 2-17-43, Noguchicho, Higashimurayam, Tokyo 189-0022, Japan.

Published: August 2007

A combination of benzoxazole, phenoxyalkyl side chain, and phenoxybutyric acids was identified as a highly potent and selective human peroxisome proliferator-activated receptor alpha (PPARalpha) agonist. The synthesis, structure-activity relationship (SAR) studies, and in vivo activities of the representative compounds are described.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2007.05.066DOI Listing

Publication Analysis

Top Keywords

highly potent
8
potent selective
8
selective human
8
human peroxisome
8
peroxisome proliferator-activated
8
proliferator-activated receptor
8
receptor alpha
8
design synthesis
4
synthesis highly
4
alpha agonists
4

Similar Publications

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

RNA polymerase (NS5B), serves as a crucial target for pharmaceutical interventions aimed at combating the hepatitis C virus (HCV), which poses significant health challenges worldwide. The present research endeavors to explore and implement a variety of advanced molecular modeling techniques that aim to create and identify innovative and highly effective inhibitors that specifically target the RNA polymerase enzyme. In this study, a QSAR investigation was carried out on a set of thirty-eight isothiazole derivatives targeting NS5B inhibition and thus hepatitis C virus (HCV) treatment.

View Article and Find Full Text PDF

Small-molecule probes are powerful tools for studying biological systems and can serve as lead compounds for developing new therapeutics. Especially, nitrogen heterocycles are of considerable importance in the pharmaceutical field. These compounds are found in numerous bioactive structures.

View Article and Find Full Text PDF

Novel 4-alkoxy Meriolin Congeners Potently Induce Apoptosis in Leukemia and Lymphoma Cells.

Molecules

December 2024

Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.

(3-(pyrimidin-4-yl)-7-azaindoles) are synthetic hybrids of the naturally occurring alkaloids and and display a strong cytotoxic potential. We have recently shown that the novel derivative is highly cytotoxic in several lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells and predominantly targets cyclin-dependent kinases (CDKs). Here, we efficiently synthesized nine novel 2-aminopyridyl congeners (-), i.

View Article and Find Full Text PDF

Emamectin benzoate (EB) is a highly effective broad-spectrum insecticide and acaricide. However, because EB is easily degraded, the conventional formulations of EB are often overapplied. In this study, polylactic acid (PLA)-based microspheres were prepared using the modified solvent evaporation method for the controlled release of EB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!