Characterization of the triacylglycerol crystal formation in adipose tissue during a vehicle collision.

J Forensic Sci

Department of Chemistry, Materials and Forensic Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia.

Published: July 2007

The unusual appearance of crystalline fat structures was observed during the postmortem examination of a motor vehicle accident victim. The crystal structures were characterized using Fourier transform infrared spectroscopy and x-ray diffractometry. The structures were found to be made of triacylglycerols, a dominant lipid structure found in human adipose tissue, capable of forming various polymorphic structures. The morphology of the crystalline material was found using both techniques to be predominantly the beta' form of triacylglycerols. The accelerated growth of such triacylglycerol morphology has been observed as a result of shear stresses in other studies involving edible fats. As a result of the findings of this study, it is proposed that increased shear forces may be responsible for the formation of the unusual fat structure found in the victim. An understanding of the effect of forces on the structure of body fat in high-impact collisions can potentially assist in verifying a high-velocity impact.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1556-4029.2007.00479.xDOI Listing

Publication Analysis

Top Keywords

adipose tissue
8
characterization triacylglycerol
4
triacylglycerol crystal
4
crystal formation
4
formation adipose
4
tissue vehicle
4
vehicle collision
4
collision unusual
4
unusual appearance
4
appearance crystalline
4

Similar Publications

This study tested the effects of propylene glycol (PG) on the fatty acid composition of Akkaraman lambs in three different anatomical depot locations (ADLs). Twenty-four lambs were assigned to a randomized complete block design comprising three groups of 8 animals as follows: Con, 1.5%, body weight (BW) (PG1.

View Article and Find Full Text PDF

Sex differences in the metabolism of glucose and fatty acids by adipose tissue and skeletal muscle in humans.

Physiol Rev

January 2025

Metabolism, Obesity, and Nutrition Lab, School of Health, Concordia University, Montréal, Québec, Canada.

Adult males and females have markedly different body composition, energy expenditure, and have different degrees of risk for metabolic diseases. A major aspect of metabolic regulation involves the appropriate storage and disposal of glucose and fatty acids. The use of sophisticated calorimetry, tracer, and imaging techniques have provided insight into the complex metabolism of these substrates showing that the regulation of these processes varies tremendously throughout the day, from the overnight fasting condition to meal ingestion, to the effects of physical activity.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.

View Article and Find Full Text PDF

Background: Chest computed tomography (CT) is a valuable tool for diagnosing and predicting the severity of coronavirus disease 2019 (COVID-19) and assessing extrapulmonary organs. Reduced muscle mass and visceral fat accumulation are important features of a body composition phenotype in which obesity and muscle loss coexist, but their relationship with COVID-19 outcomes remains unclear. In this study, we aimed to investigate the association between the erector spinae muscle (ESM) to epicardial adipose tissue (EAT) ratio (ESM/EAT) on chest CT and disease severity in patients with COVID-19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!