A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of an electric field on the non-Newtonian response of a hybrid-aligned nematic cell under shear flow. | LitMetric

Influence of an electric field on the non-Newtonian response of a hybrid-aligned nematic cell under shear flow.

J Chem Phys

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 México, Distrito Federal, Mexico.

Published: May 2007

The authors study shear flow in hybrid-aligned nematic cells under the action of an applied electric field by solving numerically a hydrodynamic model. The authors apply this model to a flow-aligning nematic liquid crystal (4'-n-pentyl-4-cyanobiphenyl) and obtain the director's configuration and the velocity profile at the stationary state. The authors calculate the local and apparent viscosities of the system and found that the competition between the shear flow and the electric field gives rise to an interesting non-Newtonian response with regions of shear thickening and thinning. The results also show an important electrorheological effect ranging from a value a bit larger than the Miesowicz viscosity etab [Nature (London) 17, 261 (1935)] for small electric fields and large shear flows to etac for large electric fields and small shear flows. The analysis of the first normal stress difference shows that for small negative shear rates, the force between the plates of the cell is attractive, while it is repulsive for all other values of shear rates. However, under the application of the electric field, one can modify the extent of the region of attraction. Finally, the authors have calculated the dragging forces on the plates of the cell and found that it is easier to shear in one direction than in the other.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2741548DOI Listing

Publication Analysis

Top Keywords

electric field
16
shear flow
12
shear
9
non-newtonian response
8
hybrid-aligned nematic
8
electric fields
8
shear flows
8
shear rates
8
plates cell
8
electric
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!