Steel multi-wire cables are widely employed in civil engineering. They are usually made of a straight core and one layer of helical wires. In order to detect material degradation, nondestructive evaluation methods based on ultrasonics are one of the most promising techniques. However, their use is complicated by the lack of accurate cable models. As a first step, the goal of this paper is to propose a numerical method for the study of elastic guided waves inside a single helical wire. A finite element (FE) technique is used based on the theory of wave propagation inside periodic structures. This method avoids the tedious writing of equilibrium equations in a curvilinear coordinate system yielding translational invariance along the helix centerline. Besides, no specific programming is needed inside a conventional FE code because it can be implemented as a postprocessing step of stiffness, mass and damping matrices. The convergence and accuracy of the proposed method are assessed by comparing FE results with Pochhammer-Chree solutions for the infinite isotropic cylinder. Dispersion curves for a typical helical waveguide are then obtained. In the low-frequency range, results are validated with a helical Timoshenko beam model. Some significant differences with the cylinder are observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.2730741 | DOI Listing |
Biochemistry
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India.
Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Computationally designed 29-residue peptides yield tetra-α-helical bundles with symmetry. The "bundlemers" can be bifunctionally linked via thiol-maleimide cross-links at their N-termini, yielding supramolecular polymers with unusually large, micrometer-scale persistence lengths. To provide a molecularly resolved understanding of these systems, all-atom molecular modeling and simulations of linked bundlemers in explicit solvent are presented.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Laboratory of Medicinal Chemistry, Rega Institute for Medicinal Research, Herestraat 49, Box 1030, Leuven B-3000, Belgium.
Synthetic nucleic acids, also defined as xenobiotic nucleic acids (XNAs), opened an avenue to address the limitations of nucleic acid therapeutics and the development of alternative carriers for genetic information in biotechnological applications. Two related XNA systems of high interest are the α-l-threose nucleic acid (TNA) and (3'-2') phosphonomethyl threosyl nucleic acid (tPhoNA), where TNAs show potential in antisense applications, whereas tPhoNAs are investigated for their predisposition toward orthogonal genetic systems. We present predictions on helical models of TNA and tPhoNA chemistry in homoduplexes and in complex with native ribose chemistries.
View Article and Find Full Text PDFSoft Matter
January 2025
College of Chemistry, Sichuan University, Chengdu 610064, China.
Biomolecules usually adopt ubiquitous circular structures which are important for their functionality. Based on three-dimensional Langevin dynamics simulations, we investigate the conformational change of a polymer confined in a spherical cavity. Both passive and active polymers with either homogeneous or heterogeneous stiffness are analyzed in a comparative manner.
View Article and Find Full Text PDFJ Eukaryot Microbiol
January 2025
Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
Euglenids are flagellates with diverse modes of nutrition, including the photosynthetic Euglenophyceae, which acquired plastids via secondary endosymbiosis with green algae, and a diverse assemblage of predators of bacteria and other microeukaryotes. Most heterotrophic euglenids have never been cultivated, so their morphology remains poorly characterized and limited to only a few studies. "Ploeotids" are a paraphyletic group representing much of the diversity of heterotrophic euglenids and are characterized by their feeding apparatus and a rigid pellicle of 10-12 longitudinally arranged strips.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!