Numerical investigation of elastic modes of propagation in helical waveguides.

J Acoust Soc Am

Laboratoire Central des Ponts et Chaussées, Division for Metrology and Instrumentation, Route de Pornic, BP 4129, 44341 Bouguenais Cedex, France.

Published: June 2007

AI Article Synopsis

  • Steel multi-wire cables are commonly used in civil engineering, but detecting material degradation is challenging due to inadequate cable models.
  • A new numerical method using finite element (FE) techniques has been proposed to study elastic guided waves in a single helical wire, avoiding complex curvilinear equations and allowing easy implementation in existing FE codes.
  • The accuracy of this method is validated against established solutions for isotropic cylinders, showing distinct dispersion characteristics for helical waveguides compared to traditional cylindrical models.

Article Abstract

Steel multi-wire cables are widely employed in civil engineering. They are usually made of a straight core and one layer of helical wires. In order to detect material degradation, nondestructive evaluation methods based on ultrasonics are one of the most promising techniques. However, their use is complicated by the lack of accurate cable models. As a first step, the goal of this paper is to propose a numerical method for the study of elastic guided waves inside a single helical wire. A finite element (FE) technique is used based on the theory of wave propagation inside periodic structures. This method avoids the tedious writing of equilibrium equations in a curvilinear coordinate system yielding translational invariance along the helix centerline. Besides, no specific programming is needed inside a conventional FE code because it can be implemented as a postprocessing step of stiffness, mass and damping matrices. The convergence and accuracy of the proposed method are assessed by comparing FE results with Pochhammer-Chree solutions for the infinite isotropic cylinder. Dispersion curves for a typical helical waveguide are then obtained. In the low-frequency range, results are validated with a helical Timoshenko beam model. Some significant differences with the cylinder are observed.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.2730741DOI Listing

Publication Analysis

Top Keywords

helical
5
numerical investigation
4
investigation elastic
4
elastic modes
4
modes propagation
4
propagation helical
4
helical waveguides
4
waveguides steel
4
steel multi-wire
4
multi-wire cables
4

Similar Publications

Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.

View Article and Find Full Text PDF

Computationally designed 29-residue peptides yield tetra-α-helical bundles with symmetry. The "bundlemers" can be bifunctionally linked via thiol-maleimide cross-links at their N-termini, yielding supramolecular polymers with unusually large, micrometer-scale persistence lengths. To provide a molecularly resolved understanding of these systems, all-atom molecular modeling and simulations of linked bundlemers in explicit solvent are presented.

View Article and Find Full Text PDF

Synthetic nucleic acids, also defined as xenobiotic nucleic acids (XNAs), opened an avenue to address the limitations of nucleic acid therapeutics and the development of alternative carriers for genetic information in biotechnological applications. Two related XNA systems of high interest are the α-l-threose nucleic acid (TNA) and (3'-2') phosphonomethyl threosyl nucleic acid (tPhoNA), where TNAs show potential in antisense applications, whereas tPhoNAs are investigated for their predisposition toward orthogonal genetic systems. We present predictions on helical models of TNA and tPhoNA chemistry in homoduplexes and in complex with native ribose chemistries.

View Article and Find Full Text PDF

Biomolecules usually adopt ubiquitous circular structures which are important for their functionality. Based on three-dimensional Langevin dynamics simulations, we investigate the conformational change of a polymer confined in a spherical cavity. Both passive and active polymers with either homogeneous or heterogeneous stiffness are analyzed in a comparative manner.

View Article and Find Full Text PDF

Euglenids are flagellates with diverse modes of nutrition, including the photosynthetic Euglenophyceae, which acquired plastids via secondary endosymbiosis with green algae, and a diverse assemblage of predators of bacteria and other microeukaryotes. Most heterotrophic euglenids have never been cultivated, so their morphology remains poorly characterized and limited to only a few studies. "Ploeotids" are a paraphyletic group representing much of the diversity of heterotrophic euglenids and are characterized by their feeding apparatus and a rigid pellicle of 10-12 longitudinally arranged strips.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!