Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using a sensitive optical interferometer, the low frequency displacement nonlinearly generated by an ultrasonic tone burst propagating in a liquid is studied. Close to the source, the low frequency displacement contains a quasi-static component, which is affected by diffraction effects farther from the transducer. The experimental setup provides quantitative results, which allow the determination of the nonlinearity parameter of the liquid with a good accuracy. Such measurements are carried out in water and ethanol. Finally, the pressure associated with the low frequency displacement is discussed. Introducing the temporal mean value of the displacement, as already done in lossless solids, the noncumulative part of this second order pressure is associated with the static part of the low frequency displacement. This interpretation leads to extend the definition of the Rayleigh radiation pressure usually introduced for a continuous plane wave radiated in a confined fluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.2730624 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!