Asticcacaulis excentricus, who lives in upper-layer waters providing food resource to the mosquito larvae and has been proven to be a successful host to produce the mosquitocidal binary toxins or Cry11Aa toxin from Bacilli (Liu et al., 1996, Nat Biotech 14: 343; Armengol, et al. , 2005, Curr Microbiol 51: 430), was developed to express cyt1Aa gene from Bacillus thuringiensis subsp. israelensis (Bti). Two A. excentricus transformants were constructed with the attempt of producing CytlAa alone and alongside with Cry11Aa, repectively. Detection of expressed Cry11Aa and CytlAa proteins by immunoblot in the recombinant A. excentricus clones showed that either cry11Aa or cyt1Aa was expressed well solely but not simultaneously although both restriction analyses of plasmid DNA and DNA sequencing showed that the transformed plasmid was identical to scheme. To investigate the reason why the recombinant A. excentricus harboring both genes and their ribosome binding site (RBS) sequences expressed only Cry11Aa, the total RNA of A. excentricus cells was extracted and revealed three-band pattern in which all RNA molecule weights are not greater than 16S RNA of Escherichia coli by formamide agarose gel electrophoresis, indicating that different RNA systems within these two Gram-negative strains required distinguishingly organised constructs to express multiple foreign genes. It is hypothesized that an extra promoter upstream of RBS sequence is required to express cyt1Aa in the cry11Aa-cyt1Aa tandom plasmid.
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China. Electronic address:
A 90-d laboratory experiment was carried out using Bacillus thuringiensis (Bt) rice straws (BTTY and GK775) and non-Bt rice straws (MXZ2, HH1179, and HH38). The objective was to investigate the differences in the effects of Bt and non-Bt rice straws on the earthworm Eisenia fetida. The analytic hierarchy process was applied to assess the risk of returning rice straw to soil on E.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar. Electronic address:
This study is the first modeling exercise to assess the impacts of climate change on the current and future global distribution of Bacillus thuringiensis (Bt). Bt is a common Gram-positive, rod-shaped bacterium widely distributed in various environments, including soil and water. It is widely recognized as a source of effective and safe agricultural biopesticides for pest management in various climatic regions globally.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia.
The ability of a cold-shock protein CspD from to protect both dicots and monocots against various pathogens is well confirmed under both greenhouse and field conditions; however, the molecular basis of this phenomenon at the transcriptomic level still remains unexplored. Expression profiles of some marker genes associated with SAR/ISR nonspecific resistance pathways and ROS scavengers were examined in CspD-treated plants, and the RNA-seq analysis of CspD-treated plants was first carried out. The ISR markers PDF1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!