Water and fertilizer are the keys in improving dry land productivity, and the main factors limiting the agricultural development in dry land regions. For our food security and agricultural sustainable development, it' s of significance to bring the effect of water and fertilizer on increasing yield into full play. This paper introduced the design principles of several commonly used methods in researching the effect of water and fertilizer, e.g., irrigation experiment, rainproof-shed experiment and long-term experiment, compared their advantages and disadvantages, and discussed the mechanisms and models of water-fertilizer interaction on dry land farmland, based on the sum-up of the achievements of related qualitative and quantitative researches. It was indicated that under appropriate conditions, there was a positive interaction between water and fertilizer on grain yield, but the effect differed with research method and natural condition. The development trend of the researches on the water-fertilizer effect on dry land farmland in light of the characteristics of agro-ecosystern was also prospected.
Download full-text PDF |
Source |
---|
Data Brief
February 2025
UMR SAS, INRAE, Institut Agro, 35 000 Rennes, France.
Forage crop rotations including grasslands, common in dairy systems, are known to ensure good productivity and limit the decrease of soil organic matter frequently observed in permanent arable land. A dataset was built to compile data from the Kerbernez long-term experiment, conducted in Brittany(France) from 1978 to 2005. This experiment compared the effect of different forage crop rotations fertilized with ammonium nitrate and/or slurry, with or without grassland, on forage production (quantity, quality) and changes in soil physio-chemical characteristics.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Sustainable Water and Land Management in Agriculture, The Mediterranean Agronomic Institute (CIHEAM Bari), 70010 Valenzano, Bari, Italy.
The calibration of capacitive soil moisture sensors is an essential step towards their integration into smart solutions. This study investigates the calibration of a widely used low-cost capacitive soil moisture sensor (SKU:SEN0193, DFRobot, Shanghai, China) in a loamy silt soil typically found in the Puglia region of Italy. The calibration function was derived from a random sample of 12 sensors, with three soil sample replicas per sensor, each of which had one of five gravimetric soil moisture contents, from relatively dry (5%) to full saturation (40%).
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as J2-5-19.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Royal Danish Library, Special Collections, Søren Kierkegaards Plads. 1, 1221, Copenhagen K, Denmark.
Historical topographical maps contain valuable, spatially and thematically detailed information about past landscapes. Yet, for analyses of landscape dynamics through geographical information systems, it is necessary to "unlock" this information via map processing. For two study areas in northern and central Jutland, Denmark, we apply object-based image analysis, vector GIS, colour image segmentation, and machine learning processes to produce machine-readable layers for the land use and land cover categories forest, wetland, heath, dune sand, and water bodies from topographic maps from the late nineteenth century.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Bottom sediments of the North American Great Lakes are characterized by a high loading (over 3,000 tonnes) of polyhalogenated carbazoles (PHCZs). The origin of this environmental contaminant loading is unclear. Here, we first examined PHCZs levels and profiles in sediment, lotus, and fish from the Ya-Er Lake (China) that has been under the influence of an obsolete chlor-alkali facility for forty years and discovered substantial PHCZs contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!