The study on the density of ambient particles settling upon the leaf surface of six conifers in Beijing, the micro-configurations of the leaf surface, and the mineral and element compositions of the particles showed that at the same sites and for the same tree species, the density of the particles settling upon leaf surface increased with increasing ambient pollution, but for various tree species, it differed significantly, with the sequence of Sabina chinensis and Platycladus orientalis > Cedrus deodara and Pinus bungeana > P. tabulaeformis and Picea koraiensis. Due to the effects of road dust, low height leaf had a larger density of particles. The density of the particles was smaller in summer than in winter because of the rainfall and new leaf growth. The larger the roughness of leaf surface, the larger density of the particles was. In the particles, the overall content of SiO2, CaCO3, CaMg(CO3,), NaCl, 2CaSO4 . H2O, CaSO4 . 2H2O and Fe2O3 was about 10%-30%, and the main minerals were montmorillonite, illite, kaolinite and feldspar. The total content of 21 test elements in the particles reached 16%-37%, among which, Ca, Al, Fe, Mg, K, Na and S occupied 97% or more, while the others were very few and less affected by sampling sites and tree species.
Download full-text PDF |
Source |
---|
Chem Biodivers
January 2025
Chuxiong Normal University, Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000,China, No. 456 Luchengnan Road, chuxiong, Academy of Science and Technology, 651000, chuxiong, CHINA.
Gray mold disease is caused by B. cinerea, which could severely reduce the production yield and quality of tomatoes. To explore more potential fungicides with new scaffolds for controlling the gray mold disease, ten aldehydes-thiourea derivatives were designed, synthesized and assayed for inhibitory activity against three plant pathogenic fungi.
View Article and Find Full Text PDFPeerJ
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.
Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).
View Article and Find Full Text PDFProtoplasma
January 2025
Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia.
Previously, it was found that four types of glandular trichomes (GTs) are developed on the surface of all aerial organs in Doronicum species. A detailed study of leaves had shown that only two types of GTs form in them. Nothing was known about any differences of GTs on vegetative and reproductive organs.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information·Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, Jiangsu, 210019, China.
The widespread concern over nanoplastics (NPs) has prompted extensive research into their environmental impact. Concurrently, the study examined the combined toxicity of PS NPs and cadmium (Cd) on wheat. As indicated by the results of in situ Micro-ATR/FTIR, the aging process of PS NPs (50 nm) led to an increase in carbonyl and hydroxyl groups on their surface, enhancing hydrophilicity and consequently, the adsorption capacity for Cd.
View Article and Find Full Text PDFSoil salinization poses a significant ecological and environmental challenge both in China and across the globe. Plant growth-promoting rhizobacteria (PGPR) enhance plants' resilience against biotic and abiotic stresses, thereby playing a vital role in soil improvement and vegetation restoration efforts. PGPR assist plants in thriving under salt stress by modifying plant physiology, enhancing nutrient absorption, and synthesizing plant hormones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!